Skribilo
User Manual

for version 0.10.0

Erick Gallesio, Manuel Serrano, Ludovic Courtes
https://nongnu.org/skribilo/

https://nongnu.org/skribilo/

Contents

Introduction e e
Who May Use Skribilo?
Why Use Skribilo?
More on Skribilo

Chapter 1.
1.1.
1.2.
1.3.
14.
1.5.
1.6.

1.7.

Chapter 2.
2.1.

2.2.
2.3.
24.
2.5.
2.6.

Chapter 3.
3.1.

Getting Started
Hello World! .
Adding Colors and Fonts
Structured Documents
Hyperlinks
Using Modules
Dynamic Documents
1.6.1. Simple Computations
1.6.2. Text Generation
1.6.3. Introspection

Compiling Skribilo Documents

Syntax .
The Skribe Syntax
2.1.1. Formal Syntax
2.1.2. Values
The Outline Syntax
The Gemtext Syntax
The RSS 2.0 Syntax
Documents in Scheme Programs

Writing New Readers

Standard Markups
Building documents

3.1.1. Document

N R~ -

O & NN O O O U1 = B W W

11
11
12
13
13
17
17
18
18

21
22
22

iv

3.1.2. Author
3.2. Spacing
3.3. Sectioning
3.3.1. Chapter
3.3.2. Sections
3.3.3. Paragraph
3.3.4. Blockquote
3.4. Table of contents
3.5. Ornaments
3.6. Line breaks
3.6.1. Linebreak
3.6.2. Horizontal rule
3.7. Font
3.8. Justification
3.9. Enumeration
3.10. Frames and Colors
3.10.1. Frame
3.10.2. Color
3.11. Figures e .
3.11.1. List of Figures
3.12. Images ..
3.12.1. Image formats
3.13. Table .
3.13.1. Table Row
3.13.2. Table Cell
3.13.3. Example
3.14. Footnote

3.15. Characters, Strings and Symbols

3.15.1. Characters
3.15.2. Strings
3.15.3. Symbols

24
25
26
26
28
29
30
30
32
34
34
34
35
36
38
40
40
41
43
44
45
47
48
49
50
50
51
52
52
53
54

Chapter 4.
4.1.
4.2.
4.3.
4.4.

Chapter 5.
5.1.

5.2.
5.3.

Chapter 6.

6.1.
6.2.

6.3.

6.4.

Chapter 7.

7.1.
7.2.
7.3.

Chapter 8.

8.1.
8.2.
8.3.

Chapter 9.

9.1.

References and Hyperlinks
Mark

Reference

Electronic Mail

Skribe URL Index

Indexes
Making indexes
Adding entries to an index

Printing indexes

Bibliographies
Bibliography Tables
Bibliography .
6.2.1. Bibliography Syntax
Printing a Bibliography
6.3.1. Filtering Bibliography Entries
6.3.2. Sorting Bibliography Entries
Skribebibtex

Computer Programs
Program
Source Code

Language

Equation Formatting
Syntax
Rendering

Summary

Pie Charts
Syntax

63
63
64
68
69

71
71
72
73

77
77
78
79
80
83
86
87

89
89
90
94

95
95
97
97

101
101

Chapter 10. Slide Package O (0 /4
10.1. Slides and Slide Topics 107
10.2. Pause L L L L L. ... 109
10.3. Slide Vertical Space 109
10.4. Slide Embed Applications 110
10.5. Example L L oL oL L ... 11D

Chapter 11. Standard Packages 113
11.1. Articles OO O
11.1.1. acmproc R G
11.1.2. jfp O
11.1.3. Incs .. o & o e e e e e e e e . 114

11.2. Languages e e e e e e e e e e e e . 114
11.2.1. french+ & e e e e wo.o. 115

11.3. letter RN O o)
11.4. Web R I o)
11.4.1. web-book ot 16
11.4.2. web-book2 o e e e e e .. 116
11.4.3. html-navtabs« & & .« 116

Chapter 12. Standard Library O O £
12.1. File Functions O O L
12.2. Configuration Functions O 021 0

Chapter 13. Engines 121
13.1. Manipulating Engines 121
13.1.1. Creating Engines 121

13.1.2. Retrieving Engines ‘e e e e e w1283

13.1.3. Engine Accessors 123

13.1.4. Engine Customs 124

13.1.5. Writing New Engines 125

13.2. HTML Engine i e e e e e e e e e e 126
13.2.1. HTML Customization e e e e e w126

Vi

13.3. Lout Engine
13.3.1. Lout Customization
13.3.2. Additional Markup
13.4. LaTeX Engine -
13.4.1. LaTeX Customization
13.4.2. LaTeX Document Class
13.5. ConTeXt Engine
13.5.6. ConTeXt Customization
13.7. Info Engine
13.8. XML Engine e
13.8.1. XML Customization

Chapter 14. Skribilo Compiler
Synopsis
Description
Suffixes
Options

Environment Variables
Chapter 15. Getting Configuration Information
Synopsis

Description

Chapter 16. Editing Skribilo Programs
16.1. Skribilo Emacs Mode

Chapter 17. List of examples

Index

132
132
138
141
141
144
144
144
145
146
146

147
147
147
147
148
150

151
151
151

153
153

155

157

vii

Introduction

Skribilo is a document production toolkit and a programming language designed
for implementing electronic documents'. It is mainly designed for the writing of
technical documents such as the documentation of computer programs. With
Skribilo these documents can be rendered using various tools and technologies.
For instance, a Skribilo document can be compiled to an HTML file that suits Web
browser, it can be compiled to a TeX file in order to produce a high-quality printed
document, and so on.

This manual documents Skribilo version 0.10.0. Since it is based on Skribe’s
user manual, you might stumble upon documentation bits that are obsolete or
inaccurate in the context of Skribilo, although work is being done to fix it.

Who May Use Skribilo?

Anyone needing to design web pages, PostScript/PDF files or Info documents can
use Skribilo. In particular, there is no need for programming skills in order to use
Skribilo. Skribilo can be used as any text description languages such as LaTeX, Lout
or HTML.

Why Use Skribilo?

There are three main reasons for using Skribilo:

* Itiseasier to typein Skribilo texts than other text description formats. The need
tor meta keywords, that is, words used to describe the structure of the text and
not the text itself, is very limited.

» Skribilois highly skilled for computing texts. It is very common that one needs
to automatically produce parts of the text. This can be very simple such as,
for instance, the need to include inside a text, the date of the last update or the
number of the last revision. Sometimes it may be more complex. For instance,
one may be willing to embed inside a text the result of a complex arithmetic

!To be more precise, the programming language itself is that of Skribe, the project Skribilo is based on.

http://latex-project.org/
http://lout.sf.net/
http://www.inria.fr/mimosa/fp/Skribe

2 Chapter . Introduction

computation. Or even, you may want to include some statistics about that text,
such as, the number of words, paragraphs, sections, and so on. Skribilo makes
these sort of text manipulation easy whereas other systems rely on the use of
text preprocessors.

* Thesame source file can be compiled to various output formats such as HTML,
PostScript, Info pages, etc.

More on Skribilo

Skribilo is based on Skribe, which was designed and implemented by Manuel Ser-
rano and Erick Gallesio. Although it departs from it on some aspects, it shares the
overall design and philosophy. Erick and Manuel described the main design deci-
sions behind Skribe in a paper published in the 2005 Journal of Functional Program-
ming (JFP) entitled Skribe: A Functional Authoring Language. Although parts of the
paper are slightly outdated, it gives a very good idea of Skribilo’s innards, and no-
tably contains a description of the 3 stages of documentation “evaluation”.

http://www.inria.fr/mimosa/fp/Skribe
http://www-sop.inria.fr/mimosa/Manuel.Serrano/publi/jfp05/article.html

Chapter 1. Getting Started

In this chapter, the syntax of a Skribilo text is presented informally. In particular, the
Skribilo syntax is compared to the HTML syntax. Then, it is presented how one
can use Skribilo to make dynamic text (i.e texts which are generated by the system
rather than entered-in by hand). Finally, It is also presented how Skribilo source files
can be processed.

1.1. Hello World!

In this section we show how to produce very simple electronic documents with
Skribilo. Suppose that we want to produce the following Web document:

Hello World!

This is a very simple text.

The HTML source file for such a page should look like:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<HTML>

<HEAD>

<TITLE>Hello World Example</TITLE>

</HEAD>

<BODY>

<H1>Hello World!</H1>

This is a very simple text.

</BODY>
</HTML>

In Skribilo, the very same document must be written:

(document :title [Hello World!]
:html-title [Hello World Example]

[This is a very simple text.])

4 Chapter 1. Getting Started

1.2. Adding Colors and Fonts

Let us suppose that we want now to colorize and change the face of some words
such as:

Hello World!

This is a very simple text.

The HTML source file for such a document should look like:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<HTML>

<HEAD>

<TITLE>Hello World Example</TITLE>

</HEAD>

<BODY>

<H1>Hello World!</H1>

This is a very <I>simple</I> text.

</BODY>
</HTML>

In Skribilo, the very same document must be written:

(document :title [Hello World!]
chtml-title [Hello World Example]

[This is a , (bold [very]) , (it [simple])
, (color :fg [red] [text]).l])

As one may notice the Skribilo version is much more compact than the HTML one.

1.3. Structured Documents

For large documents there is an obvious need of structure. Skribilo documents
may contain chapters, sections, subsections, itemize, ... For instance, if we want to
extend our previous example to:

Hello World!

1.3. Structured Documents 5

1. A first Section

This is a very simple text.

2. A second Section

That contains an itemize construction:
. first item
.second item
. third item

The Skribilo source for that text is:

(document :title [Hello World!]
(chapter :title [A first Section]

[This is a , (bold [very]) , (it [simple])
; (color :fg [red] [text]).l])

(chapter :title [A second Section]

[That section contains an , (bold [itemize])
construction:

, (itemize (item [first item])
(item [second item])
(item [third item]))]1))

1.4. Hyperlinks

A Skribilo document may contain links to chapters, to sections, to other Skribilo
documents or web pages. The following Skribilo source code illustrates these
various kinds of links:

(document :title [Various Links]
(chapter :title [A Section]

[The first link points to an external web page.
Here we point to a , (ref :url "http://slashdot.org/"
:text [Slashdot]) web page. The second one points to
the second , (ref :chapter "A Second Section" :text
[section]) of that document.])

6 Chapter 1. Getting Started

(chapter :title "A Second Section"
[The last link points to the first

, (ref :skribe "user.sui" :chapter "Introduction"
:text [chapter]) of the Skribilo User Manual.]))

1.5. Using Modules

Skribilo comes with extra features bundled in modules. In fact, anyone can write new
modules that extend Skribilo. For example, extra bibliography features are bundled
in amodule called (skribilo biblio).Tousethem in a document, that document
the following line must be added at the very beginning of the document, before the
document markup:

(use—modules (skribilo biblio))

Suppose you also want to use the mathematical formula layout package, which is
bundled in the (skribilo package eq) module. To do that, you can either add
another use-modules form at the top of the document, or combine both:

(use—-modules (skribilo biblio)
(skribilo package eq))

The module system described above is actually that of GNU Guile. More
information is available in Guile’s manual.

1.6. Dynamic Documents

Since Skribilo is a programming language, rather than just a markup language, it is
easy to use it to generate some parts of a document. This section presents here the
kind of documents that can be created with Skribilo.

1.6.1. Simple Computations

http://www.gnu.org/software/guile/

1.6. Dynamic Documents 7

In this section we present how to introduce a simple computation into a document.
For instance, the following sentence

sqrt(2) = 1.4142135623730951

is generated with the following piece of code:

[sqrt(2) = , (sqrt 2)]

Here, we use the Scheme function sqrt to compute the square root to be inserted
in the document. In general, any valid Scheme expression is authorized inside a
» (..) construct.

Another example of such a computation is given below.

[The value of , (symbol "pi") is , (* 4 (atan 1))]

When evaluated, this form produces the following output:

The value of 7 is 3.141592653589793.

1.6.2. Text Generation

When building a document, one often need to generate some repetitive text.
Skribilo programming skills can be used to ease the construction of such documents
as illustrated below.

The square of 1is 1
* Thesquareof2is4
* Thesquareof 3is 9
* Thesquare of 4is 16
* Thesquare of 5is 25

* Thesquare of 6is 36

8 Chapter 1. Getting Started

e Thesquare of 7 is 49
e Thesquare of 8is 64

e Thesquare of 9is 81

This text has been generated with the following piece of code

(itemize
(map (lambda (x)
(item [The square of , (bold x) is , (bold (* x x))1))
(123456728 9)))

1.6.3. Introspection

In Skribilo, a document is represented by a tree which is available to the user. So, it
is easy to perform introspective tasks on the current document. For instance the fol-
lowing code displays as an enumeration the sections titles of the current chapter:

(resolve (lambda (n e env)
(let* ((current-chapter (ast-chapter n))
(body (markup-body current-chapter))
(sects (filter (lambda (x) (is-markup?
x ’"section))
body)))
(itemize
(map (lambda (x)
(item (it (markup-option x :title))))
sects)))))

Without entering too much into the details here, the resolve function is called at
the end of the document processing. This function searches the node representing
the chapter to which belongs the current node and from it finds all its sections. The
titles of these sections are put in italics in an itemize.

The execution of this code yield the following text:

* Hello World!
» Adding Colors and Fonts

1.6. Dynamic Documents 9

* Structured Documents
* Hyperlinks

* Using Modules

* Dynamic Documents

* Compiling Skribilo Documents

1.7. Compiling Skribilo Documents

There are several ways to render a Skribilo document. It can be statically compiled
by the skribilo compiler to various formats such as HTML, LaTeX, Lout and so
on. In this section we only present static “document compilation”.

Let us suppose a Skribilo text located in a file file. skb. In order to compile to
various formats one must type in:

$ skribilo —target=html file.skb -o file.html # This produces an HTML file.
$ skribilo -t latex file.skb -o file.tex # This produces a TeX file.
$ skribilo -t lout file.skb -o file.lout # This produces a Lout file.

The reference of the skribilo compiler is given in Chapter 14.

Chapter 2. Syntax

This chapter describes the syntax or Skribilo documents—or rather, the available
syntaxes Skribilo documents can use. Skribilo actually supports several input
syntaxes, each of which is implemented by a reader. The input syntax (and reader)
can be selected at document compilation time using the -reader option of the
compiler (see Chapter 14). Nevertheless, it has a “preferred” syntax (the default
syntax), which is that of the Skribe document preparation system. Thus, the Skribe
syntax is first described, and then alternate syntaxes are presented.

2.1. The Skribe Syntax

By default or when the ~reader=skribe option is passed to the compiler, a Skri-
bilo document is composed of Skribe expressions, which resemble expressions in the
Scheme programming language, with a few extensions to make them more conve-
nient to use within documents. A Skribe expression can be:

* An atomic expression, such as a string of characters, a number.

e Alist.
e A text

Here are several examples of correct Skribe expressions:

11

http://www.inria.fr/mimosa/fp/Skribe

12

Chapter 2. Syntax

"foo", astring of characters composed of the characters ‘t’, ‘0" and ‘0.
123 3.14, two numbers.

#t #f, the true and false Skribe value.

(bold "foo bar"),a list.

[A text sample], a simple text containing three words and no escape
sequence.

[Another text sample (that is still) simple],anothersimpletext.

[Another , (bold "text") sample], a more complex text that contains
two words (Another and sample) and an expression (bold "text").The
escape sequence is introduced with the *, (" characters.

Expressions are evaluated, thus (bold "foo") has the effect of typesetting

the word foo in bold face to produce foo. Escape sequences enable evaluation of
expressions inside the text. Thus the text [Another , (bold "text") sample]
produces ‘Another text sample’.On the other hand [Another (bold "text™)
sample] produces ‘Another (bold "text") sample’because it doesnot contain
the escape sequence ’,(".

2.1.1. Formal Syntax

<expr> -><atom>

| <text>

| <list>
<list> —>(<expr>+)
<text> —>[any sequence but’,(" or a ’ <list>']
<atom> —><boolean>

| <integer>

| <float>

| <string>

| <color>
<integer>-> [0-9] +

2.1. The Skribe Syntax 13

<float> —> [0-91+.10-91*
| 10-91*.10-91+
<string> —> ...
<color> —><string>
| #10-9a-f1 [0-9a-f]1 [0-9a-f] [0-9a-f] [0-9a-f] [0-9a-f]

2.1.2. Values

2.1.2.1. Width

A Skribe width refers to the horizontal size a construction occupies on an output
document. There are three different ways for specifying a width:

An absolute pixel size
This is represented by an exact integer value (such as 350).

A relative size
This is represented by an inexact integer value (such as 50.0) which ranges in
the interval [-100.0 .. 100.0]

An engine dependent representation
This is represented by a string that is directly emitted in the output document
(such as HTML column "0*" specification). Note that this way of specifying
width is strictly unportable.

2.2. The Outline Syntax

Alternatively, Skribilo allows documents to be written in a plain text format, with
almost no markup. Instead, conventions borrowed from Emacs” Outline Mode to
denote the text structure as well as other common conventions are used to express
various formatting ideas. This syntax is implemented by the out1ine reader; thus,
it is made available by passing the ~reader=outline option to the compiler. The
major elements of this syntax are the following:

Document title and author
The document title is introduced by adding a line starting with Title: atthe
beginning of the text file, and followed by the title. Likewise, the author can be
specified with a line starting with Author:.

http://www.gnu.org/software/emacs/manual/html_node/emacs/Outline-Mode.html

14

Sectioning
Chapters are introduced using a heading preceding by a single * (star) charac-
ter. Forinstance, * The First Part onaline onits own, followed by an emp-
ty line, introduces a new chapter entitled “The First Part”. Likewise, two stars
introduce a section, three stars introduce a subsection, etc.

Emphasis, italics, bold
Words or phrases surrounded by the _ (underscore) character are emphasized;
those surrounded by / (slash) characters are italicized; finally, those surround-
ed by * (star) characters are typeset in boldface (see Section 3.5).

Quotes
Words enclosed in double quotes (i.e., two back-quote characters, then two
single-quote characters) are interpreted as quoted text, as per q.

Code
Words enclosed in single quotes (i.e., one back-quote character, then one
single-quote) are interpreted as code and are typeset using a fixed-width font,
as per tt.

Hyperlinks
URLs are automatically recognized and converted into a (ref :url .)
form (see ref). In addition, outline has limited support for Org-Mode-style
hyperlinks; for instance, [[http://gnu.org/] [The GNU Project]] yields
The GNU Project.

Here is an example showing how the outline syntax maps to the native
skribe syntax:

Example 1. The out 1ine syntax

—*— mode: outline; coding: iso-8859-1; —-*-

Title: Demonstrating Skribilo’s Outline Syntax

Author: Ludovic Courtes

Keywords: Skribilo outline Emacs

This document aims to *demonstrate*
[[http://skribilo.nongnu.org/] [Skribilo]]’s outline syntax.
* The First Chapter

The first chapter contains a couple of sections.

http://gnu.org/

They look as though they had been introduced with
the ‘section’ markup of the Skribe syntax.

** The First Section
This section is pretty much empty.
** The Second Section
This section introduces lists.
*** Bullet Lists
This section contains a wonderful ‘itemize’-style bullet
— the first item;
— the second item;
- the last one, which spans
two lines of text.
And that’s it. Note that list items had to be
separated by empty lines.
*** Enumerations
This section shows an ‘enumerate’-style list:
1. The first item;
2. The second one;

3. The last one.
Note that list items are numbered this time.

* The Second Chapter
The second chapter does _not_ add anything useful.

Text like this that starts after an empty line is
put into a new paragraph.

... produces:

(document

#:title

"Demonstrating Skribilo’s Outline Syntax"

#:author

(author #:name "Ludovic Courtes")

#:keywords

' ("Skribilo outline Emacs")

(p (list (list (list "This document aims to "
(bold "demonstrate")
mwn

Il\nll))
(list "™
(ref #:url

list:

"http://skribilo.nongnu.org/"

#:text

15

16

Chapter 2. Syntax

"Skribilo")
"’'s outline syntax.")
"\nn))
(chapter

#:title

"The First Chapter"

(p (list (list (list "The first chapter contains a couple of

sections."
"\n")

"They look as though they had been introduced

"\nll)
(list "the "
(tt "section")
" markup of the Skribe syntax.")

"\nll))
(section
#:title
"The First Section"
(p (list "This section is pretty much empty." "\n")))
(section
#:title
"The Second Section"
(p (list "This section introduces lists." "\n"))
(subsection
#:title
"Bullet Lists"
(p (list (list "This section contains a wonderful "
(tt "itemize")
"-style bullet list:")
"\nn))

with"

(itemize
(item (list "the first item;"))
(item (list "the second item;"))
(item (list (list "the last one, which spans")
" two lines of text.")))
(p (list (list "And that’s it. ©Note that list items had

to be"
"\nn)
"separated by empty lines."
"\1’1")))
(subsection
#:title
"Enumerations"
(p (list (list "This section shows an "
(tt "enumerate")
"-style list:")
"\nll))
(enumerate
(item (list "The first item;"))
(item (list "The second one;"))
(item (list "The last one.")))
(p (list "Note that list items are numbered this time."
"\n")))))
(chapter
#:title

"The Second Chapter"
(p (list (list "The second chapter does "
(emph "not")
" add anything useful.")
"\n"))
((list (list "Text like this that starts after an empty line
P

is"
"\nll)

"put into a new paragraph."

"\n"))))

2.2. The Outline Syntax 17

The out1line mode makes it possible to quickly create documents that can be
output in variety of formats (see Chapter 13). The downside is that, being a very
simple markup-less document format, there are many things that cannot be done
using it, most notably tables, bibliographies, and cross-references.

2.3. The Gemtext Syntax

Gemtext, the lightweight markup language used by the Gemini protocol, is sup-
ported as an input syntax. To use it, just pass ~-reader=gemtext to the compiler.
When used programmatically, the Gemtext reader can be customized using the fol-
lowing options.

(make—gemtext—-reader :section—numbers? :join-lines?)

:join-lines?

If #t, lines which are not separated by a blank line are joined into a single
paragraph. This is a relaxation of the Gemtext standard, and is not done
by default.

:section—numbers?

If #t, sections are numbered. Else, they are not.

2.4. The RSS 2.0 Syntax

RSS 2.0 (aka. Really Simple Syndication) is supported as an input syntax. To use it,
just pass ~reader=rss-2 to the compiler. This makes it possible to generate Skribilo
documents from RSS 2.0 feeds, which can be useful or at least funny. Consider the
following example:

$ wget http:/ /planet.gnu.org/rss20.xml
$ skribilo -R rss-2 -t lout -¢ column-number=2 < rss20.xml \
|lout |ps2pdf - > gnu-planet.pdf

It produces a two-column PDF file with the contents of the RSS feed of GNU Planet,
where each item of the feed is mapped to a Skribilo “chapter”.

https://gemini.circumlunar.space/docs/gemtext.gmi
https://gemini.circumlunar.space
http://en.wikipedia.org/wiki/RSS

18 Chapter 2. Syntax

2.5. Documents in Scheme Programs

It is also possible to create and output Skribilo documents from a Guile Scheme
program. In that case, you get to use the Scheme syntax, which is close to the Skribe
syntax described above, modulo the [..] constructs. A typical Scheme program
that would produce and output a document, pretty much like what the skribilo
compiler does, would look like this:

Example 2. Programming Skribilo documents in Scheme.
This should give you an idea of the wonderful, life-changing things that can be
achieved with a bit of document programming.

(use-modules (skribilo engine)
(skribilo evaluator)

(skribilo package base)
(srfi srfi-1))

(let (
(e (find-engine "html))

(d (document #:title "Some Title"
(chapter #:title "The Chapter"
(p "The paragraph.. "
"Text consists of "
"a list of strings.")
(apply itemize
(map number->string
(iota 10)))))))

(with-output-to-file "foo.html"
(lambda ()
(evaluate—-document d e))))

2.6. Writing New Readers

Skribilo is extensible and makes it easy to add custom readers, allowing the use of
virtually any input syntax. A reader is essentially a procedure like R5RS’ read,
i.e., a one-argument procedure that takes a port and returns an S-expression. The
returned S-expression should be a valid “document program” as shown in 2.5.
The are a few additional details, though. Implementations of readers are re-
quired to use the (skribilo reader) modules and the define-reader macro. In
addition, the reader must live in its own module, under the (skribilo reader)
module hierarchy, so that the reader lookup mechanism (used by the -reader op-

3.1. Building documents 19

tion of the compiler) can find it. This mechanism is the same as that used for engines
(see Section 13.1.5). A skeleton for a reader would be like this:

Example 3. Writing a new reader.

Users and encouraged to look at examples in the Skribilo source for additional
details.

(define-module (skribilo reader my-reader)
#:use-module (skribilo reader)
#:export (reader-specification))

(define (make-my-reader)
(lambda (port)
)

(define-reader my-reader
IIO.llI
make-my—-reader)

Chapter 3. Standard Markups

This chapter describes the forms composing Skribilo texts that use the Skribe syntax
(see Section 2.1). In XML/HTML jargon these forms are called markups. In LaTeX
they are called macros. In Skribilo these forms are called functions. In this manual, we
will say that we call a function when a function is used in a form. The values used in
a function call are named the actual parameters of the function or parameters in short.
When calling a function with parameters we say that we are passing arguments to
the function.

In this document function names are typeset in boldface. We call keyword ar-
gument anamed argument, i.e., an argument whose name, starting with a colon (:),
must be specified when the function is called. Other arguments are called plain ar-
guments or arguments for short. An optional argument is represented by a list, starting
with the character « [» and ending with the character «] », whose first element is a
keyword argument and the optional second (# £ when not specified) element is the
default value used if the optional argument value is not provided on a function call.
Arguments that are not optional are said mandatory. If a plain argument is preceded
by a . character, this argument may be used to accumulate several values. There are
two ways to pass actual arguments to a function:

* for keyword arguments: the value of the parameter must be preceeded by the
name of the argument.

» for plain arguments: a value is provided.

Example: Let us consider the function section defined as follows:
(section :title [:number #t] [:toc #t] . body)

The argument :title is a mandatory keyword argument. The keyword arguments
:number and :toc are optional. The plain argument body is preceeded with a .
character so it may receive several values. All the following calls are legal sec-
tion calls:

21

22 Chapter 3. Standard Markups

(section :title "A title" "This is the body of the section")

(section :title "A title" "This" " is" " the body of the section")
(section :title "A title" :number 3 "This" " is" " the body of the
section")

(section :title "A title" :toc #f :number 3 "This" " is"™ " the body of
the section")

(section :title "A title" :number 3 :toc #f "This" " is" " the body of

the section")

The remainder of this chapter describes “standard” markups or functions that
are commonly used in documents. By “standard”, we mean two things: first, you
will quickly notice that they look familiar if you have ever written, say, HTML or
LaTeX documents; second, they are standard because these markups are always
available by default to Skribilo documents, unlike those bundled in separate
packages such as pie charts, slides, etc. In fact, these markups are also bundled in a
package, called base, but this package is always available to Skribilo documents'.

3.1. Building documents

3.1.1. Document

The document function defines a Skribe document.

(document [:info-dir—entry ""] [:info-dir-category] [:env ' ()]
[:keywords ' ()] [:ending] [:author] [:html-title] [:title]
[:class "document"] [:ident] node..)

:ident html lout latex context info xml

The node identifier.
:class html lout latex context info xml

The node class.
:title html lout latex context info

The title of the document.
:html-title html
The title of window of the HTML browser.

!When creating Skribilo documents within Guile Scheme programs (see Section 2.5), these standard
markups can be made available by using the following clause: (use-modules (skribilo package

base)).

3.2. Spacing 23

:author html lout latex context info

The authors of the document.

:ending html lout latex context info
An ending text.
:keywords html lout

Alist of keywords which may be plain strings or markups. The keywords
will not appear in the final document but only as meta-information (e.g.,
using the HTML ‘meta’ tag) if the engine used supports it.

:env html lout latex context
A counter environment.
:info-dir-category info

The name of a category for the "directory" mechanism of the GNU Info
documentation system.

:info-dir—-entry info
Name of the entry for the GNU Info directory.
node...

The document nodes.

See also author, p. 24, chapter, p. 26, toc, p. 30.

Example 4. The document markup

(document :title "This is a Skribilo document"
:author (list (author :name "Foo" :email (mailto
"foo@nowhere.org"))

(author :name "Bar" :email (mailto
"bar@anywhere.org"))
(author :name "Gee" :email (mailto
"gee@nowhere.org")))
"A body..")
... produces:

This is a Skribilo document

24 Chapter 3. Standard Markups

Foo <foo@nowhere.org> Bar <bar@anywhere.org> Gee <gee@nowhere.org>
Abody...

3.1.2. Author

The author function is used to specify the authors of a Skribe document.

(author :name [:align ’center] [:photo] [:phone] [:address] [:url]
[:email] [:affiliation] [:title] [:class "author"] [:ident])
:ident html lout latex context info xml

The node identifier.
:class html lout latex context info xml

The node class.
:name html lout latex context info

The name of the author.

:title html lout latex context info
Their title.
:affiliation html lout latex context info

Their affiliation.
:email html lout latex context info

Their email.

:url html lout latex context info
Their web page.

:address html lout latex context info
Their address.

:phone html lout latex context info
Their phone number.

:photo html lout latex context info

Their photograph.

3.3. Sectioning 25

:align html lout latex context info

The author item alignment.

See alsomailto,p. 68, ref, p. 64.

Example 5. The author markup

(author :name "Manuel Serrano"
raffiliation "Inria Sophia-Antipolis"
:url (ref :url
"http://www.inria.fr/mimosa/Manuel.Serrano")
cemail (mailto "Manuel.Serrano@inria.fr")
:address Y ("2004 route des Lucioles — BP 93"
"F-06902 Sophia Antipolis, Cedex"
"France")
:phone "phone: (+33) 4 92 38 76 41")

... produces:

Manuel Serrano <Manuel.Serrano@inria.fr>
Inria Sophia-Antipolis
2004 route des Lucioles - BP 93F-06902 Sophia Antipolis, CedexFrance
phone: (+33)4 923876 41
http:/fwww.inriafr/mimosa/Manuel Serrano

3.2. Spacing

By default, the spacing rules are the same as those of TeX/LaTeX, for instance:
subsequent white spaces in the input text are coalesced into a single space in the
output. Language-dependent spacing rules (e.g., for punctuation) are to be handled
by the engine. This frees you from having to remember all the spacing details.

Additionally, the following markups allow you to produce explicit unbreakable
and breakable space, respectively:

http://www.inria.fr/mimosa/Manuel.Serrano

26 Chapter 3. Standard Markups
(~ [:class])

:class html lout latex context info xml

The node class.

(breakable—-space [:class] [:ident])

:ident html lout latex context info xml

The node identifier.
:class html lout latex context info xml

The node class.

3.3. Sectioning

3.3.1. Chapter

The function chapter creates new chapters.

(chapter :title [:number #t] [:toc #t] [:file] [:info-node]
[:html-title] [:class "chapter"] [:ident] node..)
:ident html lout latex context info xml

The node identifier.
:class html lout latex context info xml

The node class.

:title html lout latex context info
The title of the chapter.

:html-title html
The title of window of the HTML browser.

:info-node info

The title of the Info node (see Section about the Info engine).

3.4. Table of contents 27

:number html lout latex context info

This argument controls the chapter number. A value of #t means that
Skribilo computes the chapter number. A value of #f means that the
chapter has no number. A number or string specifies a number to be used
in lieu of the automatically computed number.

:toc html lout latex context info

This argument controls if the chapter must be referenced in the table
of contents.

:file html lout latex context info

The argument must be a boolean or a string. A value of #t tells the compil-
er to store that chapter in a separate file; a value of #f tells the compiler to
embed the chapter in the main target file. When the argument is a string,
it is used as the name of the file for this chapter.

node...

The nodes of the chapter.

See also document, p. 22, section, p. 28, toc,p. 30.

Example 6. The chapter markup

(chapter :title "This is a simple chapter" :number #f :toc #f

(p [Its body is just one sentence.]))

... produces:

This is a simple chapter

Its body is just one sentence.

28 Chapter 3. Standard Markups

3.3.2. Sections

These functions create new sections.

(section :info-node :title [:number #t] [:toc #t] [:file] [:class
"section"] [:ident] node..)

(subsection :info-node :title [:number #t] [:toc #t] [:file] [:class
"subsection"] [:ident] node..)

(subsubsection :info-node :title [:number #t] [:toc] [:file] [:class
"subsubsection"] [:ident] node..)
:ident html lout latex context info xml

The node identifier.
:class html lout latex context info xml

The node class.

:title html lout latex context info
The title of the chapter.
:info—-node info

The title of the Info node (see Section about the Info engine).
:number html lout latex context info

This argument controls the chapter number. A value of #t means that
Skribilo computes the chapter number. A value of #f means that the
chapter has no number. A number or string specifies a number to be used
in lieu of the automatically computed number.

:toc html lout latex context info
This argument controls if the chapter must be referenced in the table
of contents.

:file html lout latex context info
The argument must be a boolean or a string. A value of #t tells the compil-
er to store that section in a separate file; a value of #f tells the compiler to
embed the section in the main target file. When the argument is a string,
it is used as the name of the file for this section.

node...

The nodes of the section.

3.3. Sectioning 29

See also document, p. 22, chapter, p. 26, paragraph, p. 29, toc, p. 30.

3.3.3. Paragraph

The function paragraph (also aliased p) creates paragraphs.

(paragraph [:class] [:ident] node..)

:ident html lout latex context info xml

The node identifier.

:class html lout latex context info xml

The node class.

node...

The nodes of the paragraph.

See also document, p. 22, chapter, p. 26, section,p. 28,p,p. 29.

The function p is an alias for paragraph.

(p :ident [:class] node..)

:ident html lout latex context info xml

The node identifier.

:class html lout latex context info xml

The node class.

node...

The nodes of the paragraph.

See also document, p. 22 , chapter, p. 26 , section, p. 28 , paragraph,
p- 29.

30 Chapter 3. Standard Markups

3.3.4. Blockquote

The function blockquote can be used for text quotations. A text quotation is
generally renderd as an indented block of text.

(blockquote [:class] [:ident] node..)

:ident html lout latex context info xml

The node identifier.
:class html lout latex context info xml

The node class.

node...

The nodes of the quoted text.

3.4. Table of contents

The production of table of contains.

(toc [:subsubsection] [:subsection] [:section #t] [:chapter #t]
[:class "toc"] [:ident] handle)
:ident html lout latex context info xml

The node identifier.
:class html lout latex context info xml

The node class.
:chapter html lout

A boolean. The value #t forces the inclusion of chapters in the table
of contents.

:section html lout
A boolean controlling sections.
:subsection html lout

A boolean controlling subsections.

31

:subsubsection html

A boolean controlling subsubsections.

handle

An optional handle pointing to the node from which the table of contents
if computed.

See also document, p. 22 , chapter, p. 26 , section, p. 28 , [?mark re-
solve: skribilo/documentation/api.scm:767:36:] , [?mark handle: skribi-
lo/documentation/api.scm:767:36:] .

Example 7. The toc markup

(toc :chapter #t :section #f :subsection #f)

... produces:

The second example only displays the table of contents of the current chapter.

Example 8. A restricted table of contents

(resolve (lambda (n e env)
(toc :chapter #t :section #t :subsection #t
(handle (ast-chapter n)))))

... produces:

32

3.5. Ornaments

Skribe supports the standard text ornaments.

(bold [:class] [:ident] node..)
(code [:class] [:ident] node..)
(emph [:class] [:ident] node..)
(it [:class] [:ident] node..)
(kbd [:class] [:ident] node..)
(roman [:class] [:ident] node..)
(sc [:class] [:ident] node..)
(sf [:class] [:ident] node..)
(sub [:class] [:ident] node..)
(sup [:class] [:ident] node..)
(tt [:class] [:ident] node..)
(underline [:class] [:ident] node..)
(var [:class] [:ident] node..)

:ident

The node identifier.
:class

The node class.

node...

The nodes of the ornament.

Example 9. The ornament markups

(itemize (item (roman "a roman text."))
(item (bold "a bold text."))
(item (it "an italic text."))

Chapter 3. Standard Markups

html lout latex context info xml

html lout latex context info xml

(item (emph "an emphasized text."))
(item (underline "an underline text."))
(item (kbd "a keyboard description."))

(item
(item
(item
(item
(item
(item
(item
(item
(item
text.")))))

... produces:

. a roman text.

e abold text.

e gnitalic text.

(tt "a typewritter text."))

(code "a text representing computer code."))

(var "a computer program variable description."))
(samp "a sample."))

(sc "a smallcaps text."))

(sf "a sans-serif text."))

(sup "a superscripts text."))

(sub "a subscripts text."))

(underline (bold (it "an underline, bold, italic

* anemphasized text.

¢ an underline text.

* akeyboard description.

. a typewritter text.

4 a text representing computer code.

. a computer program variable description.

* asample.

* A SMALLCAPS TEXT.

* asans-serif text.

a subscripts text.

a superscripts text.

e anunderline, bold, italic text.

33

34 Chapter 3. Standard Markups

3.6. Line breaks

Line breaks and horizontal rules enable text cutting.

3.6.1. Linebreak

The Skribe function linebreak is unportable. Even if most engines handle it for
their code production, using 1inebreak generally produces expected result. For
instance, using linebreak with an engine producing LaTeX code is bound to fail.
In consequence, as much as possible, one should prefer other ways for splitting a
text

(linebreak [:class] [:ident] num)

:ident html lout latex context info xml

The node identifier.
:class html lout latex context info xml

The node class.

num

The number of line breaks.

See also paragraph, p. 29, table, p. 48.

3.6.2. Horizontal rule

(hrule [:height 1] [:width 100.0] [:class] [:ident])

:ident html lout latex context info xml

The node identifier.
:class html lout latex context info xml

The node class.
:width html context info

The 2.1.2.1 of the horizontal rule.

3.6. Line breaks 35

:height html context
The thickness of the rule. A positive integer value stands for a number
of pixels.
3.7. Font

The function font enables font selection.

(font [:face] [:size] [:class] [:ident] node..)
:ident html lout latex context info xml
The node identifier.
:class html lout latex context info xml

The node class.

:size html lout latex context
The size of the font. The size may be relative (with respect to the current
font size) or absolute. A relative font is either specified with a floating

point value or a negative integer value. A positive integer value specifies
an absolute font size.

: face html lout
The name of the font to be used.

node...

The nodes of the font.

Example 10. The font markup

(itemize
(item (font :size -2 [A smaller font.]))
(item (font :size 6 [An absolute font size.]))
(item (font :size 4. [A larger font.]))
(item (font :face "Helvetica" [An helvetica example.])))

36 Chapter 3. Standard Markups

... produces:

] A smaller font.

An absolute font size.
A larger font.

* An helvetica example.

3.8. Justification

These functions control the text layout. The default layout is text justification.

(flush :side [:class] [:ident] node..)
(center [:class] [:ident] node..)
(pre [:class] [:ident] node..)
:ident html lout latex context info xml

The node identifier.
:class html lout latex context info xml

The node class.
:side html lout latex context info

The possible values for the side justification are left, center or right.

node...

The nodes of the font.

See also 1inebreak, p. 34, table, p. 48, prog, p. 89.

Example 11. The justification markups

3.9. Enumeration 37

(center [A , (linebreak) multilines , (linebreak) text])

(hrule)

(flush :side ’left [A , (linebreak) multilines , (linebreak) text])
(hrule)

(flush :side ’'right [A , (linebreak) multilines , (linebreak) text])
(hrule)

(pre [A text layout that

preserves
linebreaks and spaces , (it " (into which it is still
legal")

, (it "to use Skribe markups)").

1)

... produces:
A
multilines
text
A
multilines
text
A
multilines
text
A text layout that
preserves
linebreaks and spaces (into which it is still legal

to use Skribe markups).

38 Chapter 3. Standard Markups

3.9. Enumeration

These functions implements three various style of enumerations.

(itemize :symbol [:class "itemize"] [:ident] item..)
(enumerate :symbol [:class "enumerate"] [:ident] item..)

(description :symbol [:class "description"] [:ident] item..)

:ident html lout latex context info xml

The node identifier.
:class html lout latex context info xml

The node class.
: symbol html lout latex context info

The symbol that prefixes the items.

item..

The items of the enumeration.

Items are introduce by the means of the item markup:

(item :key [:class] [:ident])

:ident html lout latex context info xml

The node identifier.
:class html lout latex context info xml

The node class.
:key html lout latex context info

The item key.

Example 12. The enumeration markups

(itemize (item [A first item.])

39

(item [A , (bold "second") one:
, (itemize (item "One.")
(item "Two.")
(item "Three."))1)
(item [Lists can be nested. For instance that item contains

a
, (tt "description") :
, (description (item :key (bold "foo")
[is a usual Lisp dummy identifier.])
(item :key (bold "bar")
[is another one.])
(item :key (list (bold "foo") (bold
"bar"))

[A description entry may contain
more than
one keyword.]))])
(item [The last , (tt "itemize") entry contains an , (tt
"enumerate") :

, (enumerate (item "One.") (item "Two.") (item
"Three."))1))

(itemize :symbol "-"
(item "One.")
(item "Two.")

(item "Three.")
(item "Four."))

... produces:

¢ A firstitem.

e A second one:

¢ One.
e Two.
e Three.

¢ Lists can be nested. For instance that item contains a description:

foo
is a usual Lisp dummy identifier.

bar
is another one.

foo bar
A description entry may contain more than one keyword.

40 Chapter 3. Standard Markups

e Thelast itemize entry contains an enumerate:

1. One.
2. Two.
3. Three.

- One.

- Three.

- Four.

3.10. Frames and Colors

The function frame embeds a text inside a frame. The function color may also use
the same purpose when it is specified a bg option. This is why both functions are
included in the same Skribe manual section.

3.10.1. Frame

(frame |[:border 1] [:margin 2] [:width] [:class "frame"] [:ident]
node...)
:ident html lout latex context info xml

The node identifier.
:class html lout latex context info xml

The node class.
:width html lout latex context

The 2.1.2.1 of the frame.

3.11. Figures 41

:margin html lout latex context
The margin pixel size of the frame.

:border html lout latex context
The border pixel of the frame.

node...

The items of the enumeration.

See also color, p. 41, table, p. 48.

Example 13. The frame markup

(center (frame :width 10. :margin 10 (p [This is a frame.]l)))

... produces:

This
faame.

3.10.2. Color

The color markup enables changing locally the text of the document. If the bg color
isused, then, color acts as a container. Otherwise, it acts as an 3.5.

(color [:margin] [:width] [:fg] [:bg] [:class "color"] [:ident]
node...)
:ident html lout latex context info xml

The node identifier.

42

:class html lout latex context info xml
The node class.

:width html lout latex context
The 2.1.2.1 of the frame.

:margin html context
The margin pixel size of the frame.

:bg html lout latex context
The background color

:fg html lout latex context

The foreground color
node...

The items of the enumeration.

See also frame, p. 40, table, p. 48.

Example 14. The color markup

(center
(color :bg "#aaaaaa"
:margin 10

:width 30.
(center
(color :bg "#eeeeee" :fg "blue" :width 100. :margin 10 [This
is an
example of color box that uses a color for the
background , (emph "and") the , (color :fg "red" "foreground"). It

also specifies
a width, that is, an horizontal space, the text should

span to.1))))

... produces:

This is an example of color box that uses a color for the background and the
foreground. It also specifies a width, that is, an horizontal space, the text should

span to.

2

3.11. Figures

The figure markup shown below produces floating figures. Well, whether the
figure is really “floating” depends on the engine used (see Chapter 13): printed
output as produced by the 1out and 1atex engines do produce floating figures, but
on-line output as produced by the html engine does not.

(figure [:multicolumns] [:number #t] [:legend] [:class "figure"]
[:ident] body)

:ident html lout latex context info xml

The node identifier.
:class html lout latex context info xml

The node class.
:legend html lout latex context info

The legend of the figure. If no :ident is provided to the figure, it uses
the legend value as an identifier. In consequence, it is possible to use the
:legend value in references.

:number html lout latex context info

If the optional argument :number is a number, that number is used as the
new Scribe compiler figure counter. If it is #t the compiler automatically
sets a number for that figure. If it is #f the figure is numberless.

:multicolumns html lout latex context info

A boolean that indicates, for back-ends supporting multi-columns render-
ing (e.g., "TeX"), if the figure spans over all the columns.

body

The body of the figure.

See also ref, p. 64, document, p. 22.

Example 15. The figure markup

44

(center
(figure :legend "This is a unnumbered figure"
:ident "figl"
:number #f
(frame [Skribe is a functional programming language.])))

(center
(figure :legend "The great Penguin"
(image :file "linux.png")))

3.11.1. List of Figures

Skribilo has no built-in facility to display the list of figures. Instead, it provides a
general machinery for displaying any kind of lists of items contained in a document.
This is described in the section [?section Resolve: ./figure.skb:65:10:]and 1.6.3. For
the sake of simplicity, an example showing how to display the list of figures of a
document is included below.

Example 16. The figure markup

(resolve (lambda (n e env)
(let* ((d (ast—-document n))
(ex (container-env-get d ’figure-env)))
(table (map (lambda (e)
(tr (td :align ’"left
(markup-option e ’ :number)
n n
(ref :handle (handle e)
:text (markup-option e

:legend))
" (section "
(let ((c (ast—-section e)))
(ref :handle (handle c)
:text (markup-option
c :title)))
") ")))
(sort ex
(lambda (el e2)
(let ((nl (markup-option el
:number))

(n2 (markup-option e2
:number)))

3.12. Images 45

|Skribe is a functional programming language.|

Figure . This is a unnumbered figure

il

Figure 1. The great Penguin

(cond
((not (number? nl))
#t)
((not (number? n2))
#£)
(else
(< nl n2)))))))))))

... produces:

This is a unnumbered figure (section Figures)

1The great Penguin (section Figures)

3.12. Images

Images are defined by the means of the image function

(image :file [:zoom] [:height] [:width] [:url] [:class] [:ident]

comment)

:ident html lout latex context info xml

The node identifier.
:class html lout latex context info xml

The node class.

46

Chapter 3. Standard Markups

:file html lout latex context info

The file where the image is stored on the disk (see image path). The image
is converted (see convert-image) into a format supported by the engine.
This option is exclusive with the :url option.

surl html lout latex context info
The URL of the file. This option is exclusive with the option.
:width html lout latex context info

The width of the image. It may be an integer for a pixel size or a floating
point number for a percentage.

:height html lout latex context info

The height of the image. It may be an integer for a pixel size or a floating
point number for a percentage.

: zoom lout latex context

A zoom factor.

comment

A text describing the image.

See also *image-path*, p. 47 , convert-image, p. 47 .

Example 17. The image markup

(image :file "linux.png" "A first image")

(image :height 50 :file "linux.png" "A smaller one")
(image :file "bsd.png" "A second image")

(image :width 50 :file "bsd.png")

(image :width 200 :height 40 :file "bsd.png")

... produces:

3.12. Images 47

o'
&

Files passed as a : file argument to image are searched in the current image
path, which is defined by the *image-path* SRFI-39 parameter. This parameter
contains a list of directories and its value can be obtained using (*image-path*).
Its value can be altered using the -P command-line option of the skribilo compiler
(see Chapter 14 for details).

Ii g

3.12.1. Image formats

Images are unfortunately unportable. The various Skribe output formats support
different image formats. For instance, HTML supports gif and jpeg while the
LaTeX back-end only supports ps. Skribe tries, only when needed, to automatically
convert images to a format supported by the target to be produced. For this, it uses
external tools. The default Skribe translation scheme is:

e Do not translate an image that needs no conversion.
* Uses the fig2dev external tool to translate Xfig images.

e Uses the convert external tools to translate all other formats.

Engines support different image formats. Each engine may specify a converter
to be applied to an image. The engine custom image-format specifies the list of
supported image formats. This list is composed of a suffix such as jpeg or gif.

The function convert-image tries to convert an image according to a list of
formats. All the specified formats are successively tried. On the first success, the
function convert-image returns the name of the new converted image. On failure,
it returns #f£.

http://srfi.schemers.org/srfi-39/srfi-39.html

48 Chapter 3. Standard Markups
(convert—-image file formats)

file
The image file to be converted. The file is searched in the *image-
path*image path.

formats

A list of formats into which images are converted to.

See also *image-path*, p. 47.

3.13. Table

Tables are defined by the means of the table function.

(table [:rulecolor] [:cellspacing] [:cellpadding] [:cellstyle
"collapse] [:rules ’'none] [:frame ’'none] [:width] [:border]
[:&location] [:class] [:ident] row..)

:ident html lout latex context info xml

The node identifier.
:class html lout latex context info xml

The node class.

:border html lout context info
The table border thickness.

:width html lout latex context info
The 2.1.2.1 of the table.

: frame html lout latex context info

Which parts of frame to render. Must be one of none, above, below,
hsides, vsides, 1lhs, rhs, box, border.

:rules html lout latex context info

Rulings between rows and cols, Must be one of none, rows, cols, header,
all.

49

:cellstyle html latex

The style of cells border. Must be either collapse, separate, or a length
representing the horizontal and vertical space separating the cells.

:cellpadding html lout context info
A number of pixels around each cell.
:cellspacing html

An optional number of pixels used to separate each cell of the table. A
negative uses the target default.

:rulecolor lout info

The color of rules (see Section 3.10).

row...

The rows of the table. Each row must be constructed by the trtr function.

Note: Table rendering may be only partially supported by graphical agents.
For instance, the cel1style attributeis only supported by HTML engines support-
ing CSS2.
3.13.1. Table Row

Table rows are defined by the tr function.

(tr [:bg] [:class] [:ident] cell.))
:ident html lout latex context info xml
The node identifier.
:class html lout latex context info xml

The node class.
:bg html lout latex context

The background color of the row.

cell..

The row cells.

http://www.w3.org/TR/REC-CSS2/

50

3.13.2. Table Cell

Two functions define table cells: th for header cells and td for plain cells.

(th [:bg] [:rowspan 1] [:colspan 1] [:valign] [:align ’center]
[:width] [:class] [:ident] node)
[:bg] [:rowspan 1] [:colspan 1] [:valign] [:align ’center]
[:width] [:class] [:ident] node)
:ident html lout latex context info xml

The node identifier.
:class html lout latex context info xml

The node class.
:bg html lout

The background color of the cell.

:width html lout latex context
The 2.1.2.1 of the table.
:align html lout latex context

The horizontal alignment of the table cell (1eft, right, or center. Some
engines, such as the HTML engine, also supports a character for the
alignment.)

:valign html lout latex context
The vertical alignment of the cell. The value can be top, center, bottom.

:colspan html lout latex context
The number of columns that the cell expands to.

: rowspan html lout
The number of columns that the cell spans over.

node

The value of the cell.

3.13.3. Example

Example 18. A table

(center
(table :border 1

:width 50.

(tr :bg "#ccccece" (th

((Ex kth "Col 1") (th "Col 2")

(tr (td :align ’'center

(tr (td :align ’right
noqm))

(tr (td :align ’center

(tr (td :align ’'center
" 5 "))

(tr (td :align ’center
"2345"))))
... produces:

A table

Coll Col2 Col3
10 -20 30
21

1234
1234 5
1 2345

12

3.14. Footnote

51

:frame ’'hsides :cellstyle ’‘collapse

ralign ’'center :colspan 3 "A table"))

(th "Col 3"))

"10") (td "-20") (td "30"))

:rowspan 2

:colspan 2
:colspan 2

:colspan 1

:valign ’center "12") (td

"1234"))
"1234") (td :align ’right

"1l") (td :colspan 2

By default, footnotes appear at the bottom of the page that contains the reference to

the footnote.

(footnote [:label #t]

:ident

[:class

The node identifier.

:class

The node class.

"footnote"]

[:ident] text..)

html lout latex context info xml

html lout latex context info xml

52 Chapter 3. Standard Markups

:label html lout info

This may be either a boolean (i.e., #f or #t) indicating whether a footnote
label should automatically be produced, a string specifying a label to use
(e.g.,"*"), or anumber.

text..

The text of the footnote.

See also document, p. 22, chapter, p. 26, section, p. 28.

Example 19. A footnote

[Scheme, (footnote [To be pronounced , (char "[")Skim, (char "]")1)
is a programming language, (footnote [And a great one!]).]

... produces:

Scheme' is a programming language®.

3.15. Characters, Strings and Symbols

3.15.1. Characters

The function char introduces a character in the produced document. The purpose of
this function is to introduce escape characters or to introduce characters that cannot
be typesetted in the document (for instance because the editors does not support
them). The escapes charactersare [,] and ;.

(char char)

'To be pronounced [Skim]

2And a great one!

3.15. Characters, Strings and Symbols 53

char

The character to be introduced. Specified value can be a character, a string
or an integer

Example 20. Some characters

(itemize (item [The character , (code "#\\a"): , (char #\a).])
(item [The character , (code "\"a\""): , (char "a").])
(item [The character , (code "97"): , (char 97).1))

... produces:

¢ The character #\a: a.
¢ The character "a": a.

¢ The character 97: a.

3.15.2. Strings

the function ! introduces raw strings in the target. That is, the strings introduced
by ! are written as is, without any transformation from the engine.

(! format node..)

format

The format of the command.

node...

The arguments.

54 Chapter 3. Standard Markups

The sequences $1, $2, ... in the format are replaced with the actual values of
the arguments node.

Example 21. Some characters

[A simple , (! "string"). A more annoying one , (! "@B { string }").
A last one with arguments , (! "@Underline { $1 $2 }" (bold 1) (it
2)) .1

... produces:

A simple string. A more annoying one string. A last one with arguments 1 2.

3.15.3. Symbols

The function symbol introduces special symbols in the produced file. Note that
the rendering of symbols is unportable. It depends of the capacity of the targeted
format.

(symbol symbol)
symbol

The symbol to introduce.

Here is the list of recognized symbols:

Symbolname Rendering

—> —>
-> -
1/2 ¥
1/4 Va
3/4 %

<+ A

3.15. Characters, Strings and Symbols

<=>

==>

=>
AEligature
Aacute
Acircumflex
Agrave
Alpha
Amul
Aring
Atilde

Beta
Ccedilla
Chi

Delta
Downarrow
ETH

Eacute
Ecircumflex
Egrave
Epsilon

Eta

Euml

m:mmmmm\@cb><:~nca>z:t>c>=>>'>>>\8UUIIIIHTT$$TT

55

56

Gamma
lacute
Icircumflex
Igrave

Iota

Tuml
Kappa
Lambda
Mu

Ntilde

Nu

Oacute
Ocircumflex
Ocurcumflex
Oeligature
Ograve
Omega
Omicron
Oslash
Otilde
Ouml

Phi

Pi

Psi

Rho

Sigma
THORN
Tau

Theta

Uacute

i] P > p—]y r1

o0 Z2ZZ >R

Ocurcumflex

M L3868 OO0 00 0OAR

Chapter 3. Standard Markups

3.15. Characters, Strings and Symbols

Ucircumflex
Ugrave
Uparrow
Upsilon
Uuml

Xi

Yacute
Zeta
aacute
acircumflex
aeligature
agrave
alef

alpha
amul

and

angle
approx
aring
asterisk
atilde
beta
bottom
bullet

cap
ccedilla
cent

chi

circ

clubs

cong

IS e =

N < [

O\

N> ™R x> g »

Do

%OXS“D'I—'@WI*

N

57

58

copyright
cup
currency
dag

dashv
ddag
degree
delta
diams
divide
downarrow
eacute
ecircumflex
egrave
ellipsis
emptyset
epsilon
equiv

eta

eth

euml

euro

exists
female
forall
gamma

ge

hearts
iacute
icircumflex

iexcl

Chapter 3. Standard Markups

©
U

currency
+
—

1

o

& O

™ O

m&;t‘b*

eth

female

v <

-

[

3.15. Characters, Strings and Symbols

igrave
image
in
infinity
integral
iota
iquestion
iuml
kappa
lambda
langle
Iceil

le

Ifloor
lguillemet
Ihd

loz
male
micro
mid
middot
models
mu
mul
nabla
neq

ni

not
notin
nsupset
ntilde

(=]

U oH o X E

J

&
nsupset

n

59

60

nu

oacute

ocurcumflex

oeligature
ograve
omega
omicron
oplus

or

oslash
otilde
otimes
ouml
paragraph
parallel
partial
[

phi

pi

piv
plusminus
pound
prod
propto
psi

rangle
rceil

real
registered
rfloor

rguillemet

<

(e

M @ X8 < @ © & o g ©

a o |

H+

:l‘h

BB — ¥ <

registered

|

»

Chapter 3. Standard Markups

3.15. Characters, Strings and Symbols

rhd

rho
section
sigma
sigmaf
sim
spades
sqrt
subset
subseteq
sum
supset
supseteq
szlig

tau
therefore
theta
thetasym
thorn
times

tm

top
uacute
ucircumflex
ugrave
uparrow
upsilon
uuml
vdash
weierp

xi

Q W © v

l

a ®» U UumMmn n < »

therefore

e T = S oo S s

61

62

yacute
yen
ymul

zeta

T ST N

Chapter 3. Standard Markups

Chapter 4. References and
Hyperlinks

Skribilo supports traditional cross-references (that is, references to some part of doc-
uments) and hyperlinks (that is, visual marks enriching texts that enable interactive
browsing). Hyperlinks and references may point to:

* Inner parts of a document, such as a section or a figure.
¢ Other documents, such as Web documents.

e Other Skribe documents.

* Specific part of other Skribe documents, such as a chapter of another Skribe
document.

In order to use hyperlinks, Skribilo documents must:
* Refer to marks. This is the role of the ref Skribe function.

e Setmarks. Thisistherole of themark function. However, most Skribe functions
that introduce text structures (e.g., chapters, sections, figures, ...) automatically
introduce marks as well. So, it is useless to explicitly introduce a mark at the
beginning of these constructions in order to refer to them with an hyperlink.

4.1. Mark

The mark function sets a mark in the produced document that can be referenced to
with the ref function. Unless a :text option is specified, no visible text in associated
with the mark in the generated document.

(mark [:text] [:class "mark"] [:ident] mark)

63

64 Chapter 4. References and Hyperlinks

:ident html lout latex context info xml
The node identifier.

:class html lout latex context info xml
The node class.

text
A text associated with the markup.

mark

A string that will be used in a ref function call to point to that mark.

The Skribe functions chapter, section, subsection, subsubsection Skribe
automatically set a mark whose value is the title of the section. The Skribe function
figure automatically sets a mark whose value is the legend of the figure.

4.2. Reference

Skribilo proposes a single function that can be used for most references. This same
ref function is used for introducing references to section, to bibliographic entries,
to source code line number, etc.

(ref [:sort-bib-refs bib-sort-refs/number] [:page] [:skribe] [:line]
[thandle] [:mark] [:figure] [:url] [:bib-table (*bib-table*)]
[:bib] [:subsubsection] [:subsection] [:section] [:chapter]
[:text] [:ident] [:class])

:ident html lout latex context info xml
The node identifier.
:class html lout latex context info xml

The node class.

‘text html lout latex context info
The text that is the visual part the links for engines that support hy-
perlinks.

surl html lout latex context info xml

An URL, that is, a location of another file, such as an HTML file.

65

:mark html lout latex context info

A string that is the name of a mark. That mark has been introduced by a
mark markup.

:handle html lout latex context info
A Skribe node handle.
:ident html lout latex context info xml

The identifier of a node (which was specified as an value).
:figure html lout latex context info

The identifier of a figure.

:chapter html lout latex context info
The title of a chapter.
:section html lout latex context info

The title of a section.
:subsection html lout latex context info

The title of a subsection.
: subsubsection html lout latex context info

The title of a subsubsection.
:page lout latex context info

Aboolean enabling /disabling page reference (for hard copies as produced
by the Lout and LaTeX engines).

:bib html lout latex context info xml
A name or a list of names of bibliographic entry.

:bib-table
The bibliography where searching the entry.

:sort-bib-refs

In case where multiple bibliography entries are referenced, as in (ref
:bib ’ ("smith8l:disintegration" "corganO7:zeitgeist")), this
should be a two-argument procedure suitable for sorting. The default
procedure sorts references by number, when the-bibliography uses the
number labeling style. If it is #f, then references will not be sorted.

:line html lout latex context info xml

A reference to a progprogram line number.

66

:skribe html lout latex context info xml

The name of a Skribe Url IndexSkribe Url Index file that contains the refer-
ence. The reference can be a chapter, section, subsection, subsubsection or
even a mark located in the Skribe document described by the file sui.

See also index, p. 72, numref, p. 66, the-bibliography, p. 80.

Sometimes, it is useful to produce phrases that refer a section by its number, as
in “See Section 2.3”. This is especially useful on printed documents, as produced by
the Lout and LaTeX engines. The numref markup is provided to that end:

(numref [:class] [:separator "."] [:page] [:text ""] [:ident])

:ident html lout latex context info xml

The node identifier.
:class html lout latex context info xml

The node class.
:text

Text preceding the reference number.

:ident html lout latex context info xml
The identifier of the node (a chapter, section, subsection, etc.) being ref-
erenced.

:page

Aboolean enabling /disabling page reference (for hard copies as produced
by the Lout and LaTeX engines).

:separator

The separator between numbers.

See also ref, p. 64.

Example 22. Some references

67

[This hyperlink points to the , (ref :figure "The great Penguin" :text

"figure")

of the chapter , (ref :chapter "Standard Markups") (or also, the
, (ref :ident "std-markups" :text "chapter") about markups).

In the second example of reference, no , (code ":text") option

is specified:

, (ref :figure "The great Penguin"). One may use the , (param
":ident")

field when specified such as: , (ref :ident "figl") or , (ref :figure
"figlﬂ) .

, (linebreak)

That other one points to a well known

, (ref :url "http://slashdot.org/" :text "url"). The same without
, (code ":text"): , (ref :url "http://slashdot.org/").

, (linebreak)

And one can also refer to sections by number, as in “see , (numref
ttext

[Wonderful Section] :ident "refs")”.

, (linebreak)
With more complex tricks that are explained in Section
, (ref :section "Resolve"), it is also possible use, for the text
of the
reference, a container number such as chapter:
, (resolve (lambda (n e env)

(let ((s (findl-down (lambda (x)

(and (is-markup? x ’chapter)
(string=? (markup-option

x :title)
"Standard
Markups")))
(ast—document n))))
(ref :handle (handle s) :text (markup-option s
cnumber))))) .1
... produces:

This hyperlink points to the figure of the chapter 3 (or also, the chapter about
markups). In the second example of reference, no : text option is specified: 1.
One may use the :ident field when specified such as:

That other one points to a well known url. The same without :text:
http:/ /slashdot.org/.

And one can also refer to sections by number, as in “see Wonderful Sec-
tion 4.2”.

With more complex tricks that are explained in Section [?section Resolve:
Jsrc/links1.skb:19:2:], it is also possible use, for the text of the reference, a
container number such as chapter: 3.

http://slashdot.org/
http://slashdot.org/

68 Chapter 4. References and Hyperlinks

4.3. Electronic Mail

The mailto function is mainly useful for electronic output formats that are able to
run a mailing agent. The function mailto introduces mail annotation in a Skribe
document.

(mailto :text [:class "mailto"] [:ident] email)

:ident html lout latex context info xml

The node identifier.
:class html lout latex context info xml

The node class.
(text html lout latex context info

The text that is the visual part the links.

email

The electronic address.

Example 23. Mail address reference

[It is possible to send a mail by

, (mailto "foolnowhere.com" :text "clicking") that 1link. That same
reference without , (code ":text") options: , (mailto
"foo@nowhere.com") .

1

... produces:

It is possible to send a mail by clicking that link. That same reference without
:text options: foo@nowhere.com.

4.4. Skribe URL Index 69

4.4. Skribe URL Index

A Skribe URL Index (henceforth SUI) describes the marks that are available in a
Skribe or Skribilo document. It is to be used to make marks available to other
Skribe/Skribilo documents through the :skribe option of the ref markup. The
syntax of a SUI file is:

<sui> —> (skribe-url-index <title>
file <file-name>
(marks <sui-ref>*)
(chapters <sui-ref>*)
(section <sui-ref>*)
(subsection <sui-ref>*)
(subsubsection <sui-ref>*))
<sui-ref>—> (<string> ‘file <file-name> :mark <string>)

SUlI files can be automatically produced by the Skribilo compiler. For instance,
in order to produce the SUI file of this user manual, one should set the emit-sui
HTML custom to #t; a user.sui file will then be produced when the manual is
compiled to HTML:

skribilo -t html -o user.html user.skb

Chapter 5. Indexes

Skribe support indexes. One may accumulate all entries inside one unique index
or dispatch them amongst user declared indexes. Indexes may be monolithic or split.
They only differ in the way they are rendered by the back-ends. For a split index
a sectioning based on the specific (e.g., "the first one") character of index entries
is deployed.

5.1. Making indexes

The function make-index declares a new index.

(make—-index ident)

ident

A string, the name the index (currently unused).

See also default-index, p. 72, index, p. 72, the-index, p. 73, ref, p. 64,
mark,p. 63.

For instance, the following Skribe expression declares an index named

indexl:

Example 24. Creation of a new index
(define *indexl* (make—-index "a new index"))

This example produces no output but enables entries to be added to that in-
dex. In general it is convenient to declare indexes before the call to the document
function.

71

72

Chapter 5. Indexes

The function default-index returns the default index that pre-exists to all

execution.

(default-index)

5.2. Adding entries to an index

The function index adds a new entry into one existing index and sets a mark in the
text where the index will point to. It is an error to add an entry into an index that is
not already declared.

(index [:url] [:shape] [:index] [:note] [:class "index"] [:ident]
name)
:ident html lout latex context info xml

The node identifier.
:class html lout latex context info xml

The node class.
:index
The name of the index whose index entry belongs to. A value of #f means
that the default-index owns this entry.
:note
An optional note added to the index entry. This note will be displayed in
the index printing.
:shape
An optional shape to be used for rendering the entry.
:url
An optional URL that is referenced in the index table instead of the

location of the index.

name

The name of the entry. This must be a string.

73

See also make-index, p. 71,default-index, p. 72, the-index, p. 73.

The following expressions add entries to the index *index1*:

Example 25. Adding entries to an index
The identifier Foo is a usually used as an example. When two identifiers have to

[The identifier , (code "Foo"), (index :index *indexl* "Foo") is
a usually

used as an example. When two identifiers have to used, frequently

the

second choice is , (code "Bar"), (index :index *indexl* "Bar" :shape
(it "Bar")).

When three are needed, some use , (code "Baz")

;, (index :index *indexl* "Baz" :shape (it "Baz")).

This illustrates how to use identifier

, (index :index *indexl* "Foo" :note "How to use Foo")

, (index :index *indexl* "Foo" :note "How not to use Foo")

, (index :index *indexl* "Fooz")

..]

used, frequently the second choice is Bar. When three are needed, some use Baz.
This illustrates how to use identifier ...
There is no output associated with these expressions.

5.3. Printing indexes

The function the-index displays indexes in the produced document.

(the—index [:column 1] [:header-limit 50] [:char—-offset 0] [:split]

[:class "the-index"] [:ident] index..)

:ident html lout latex context info xml
The node identifier.

:class html lout latex context info xml
The node class.

74 Chapter 6. Bibliographies

:split
If #t, character based sectioning is deployed. Otherwise all the index
entries are displayed one next to the other.

:char-offset

The character number to use when split is required. This option may
be useful when printing index whose items share a common prefix. The
argument can be used to skip this prefix.

:header-limit

The number of entries from which an index header is introduced.

:column

The number of columns of the index.

index...

The indexes to be displayed. If index is provided, the global index default-
index is printed.

If the engine custom index-page-ref is true when a index is rendered then,
page reference framework is used instead of a direct reference framework.

Example 26. Printing indexes

(the—-index *indexl1*)

... produces:

Bar

Baz

Foo
How to use Foo
How not to use Foo

Fooz

5.3. Printing indexes 75

See the Skribe [?mark global index: ./index.skb:127:21:] for a real life index
example.

Chapter 6. Bibliographies

Skribilo provides support for bibliographies. To setup a bibliography database
and to be able to refer to its entries from a document, the following things must
be done:

* Use the default pre-existing bibliography table or create a custom one.
* Provide a bibliography database.

* Load the database using the bibliography function.

* Reference to bibliography entries with ref :bib function calls.

The following sections will guide you through these steps.

6.1. Bibliography Tables

This section describes functions dealing with bibliography tables. Essentially,
bibliography tables are the representation of your bibliographies used by Skribilo
at run-time.

The predicate bib-table? returns #t if and only if its argument is a bibliogra-
phy table as returned by make-bib-table or *bib-table*.Otherwisebib-table?
returns #£.

(bib-table? obj)

obj

The value to be tested

See also make-bib-table, p. 78, *bib-table*, p. 77 ,bibliography, p. 78,
the-bibliography, p. 80.

The function *bib-table* returns a global, pre-existing bibliography-table:

77

78 Chapter 6. Bibliographies

(*bib-table¥*)

See also bib-table?, p. 77 , make-bib-table, p. 78 , bibliography, p. 78,
the-bibliography, p. 80.

Technically, *bib-table* is actually an SRFI-39 parameter object, so it can be
queried and modified like any other parameter object.
The function make-bib-table constructs a new bibliography-table:

(make-bib-table ident)

ident

The name of the bibliography table.

See also bib-table?, p. 77 , *bib-table*, p. 77 , bibliography, p. 78 ,
the-bibliography, p. 80.

6.2. Bibliography

The bibliography function loads bibliography entries into the bibliography table
specified using the :bib-table parameter. It can be passed either lists representing
entries (such as an article or book reference), or strings denoting the names of
files that contains several entries. All the entries loaded in memory can then be
referred to with ref. A bibliography database must be loaded before any reference
is introduced. It is advised to place the bibliography function call before the call
to the document function call.

(bibliography [:bib-table (*bib-table*)] [:command] entry..)

: command html lout latex context info xml

An external command to be applied when loading the bibliography
entries. The sequence ~a is replaced with the name of the file when the
command is invoked.

:bib-table html lout latex context info xml

The table where entry is searched.

http://srfi.schemers.org/srfi-39/srfi-39.html

79

entry..

If entry is a string, it denotes a file containing the entry (see bibliograph
path). Otherwise, it is a list described by the syntax below.

See also bib-table?, p. 77 , make-bib-table, p. 78 , *bib-table*, p. 77 ,
the-bibliography, p. 80.

Files passed as an argument to bibliography are searched in the current bibli-
ography path, which is defined by the *bib-path* SRFI-39 parameter. This parame-
ter contains a list of directories and its value can be obtained using (*bib-path*).
Its value can be altered using the -B command-line option of the skribilo compiler
(see Chapter 14 for details).

The :command option can be used to import foreign bibliography. The
following example, shows how to directly use a BibTeX bibliography using the 6.4
translator.

Example 27. Printing a Bibliography

(bibliography :command "gzip -d -to-stdout ~a | skribebibtex"
"scheme.bib.gz")

6.2.1. Bibliography Syntax

The Skribe/Skribilo bibliography database uses a format very close to the BibTeX
one, which is a parenthetic version of BibTeX. Here is the syntax of an entry:

<entry> —> (<kind> <key> <field>+)

<kind> —> techreport |article |inproceedings |book
<key> —> <symbol> |<string>

<field> —> (<symbol> <string>)

BibTeX files cannot be directly loaded but the tool skribebibtex can be use
to automatically convert BibTeX format to Skribe bibliography format. Here is an
example of a simple Skribe database.

http://srfi.schemers.org/srfi-39/srfi-39.html

80 Chapter 6. Bibliographies

(book queinnec:lisp
(author "Christian Queinnec")
(title "Lisp In Small Pieces")
(publisher "Cambridge University Press")
(year "1996"))

(book scheme:ieee
(title "IEEE Standard for the Scheme Programming Language")
(author (noabbrev "IEEE Std 1178-1990"))
(publisher "Institute of Electrical and Electronic Engineers,
Inc.")
(address "New York, NY")
(year "1991"))

(misc bigloo
(author "Manuel Serrano")
(year "2006")
(url "http://www.inria.fr/mimosa/fp/Bigloo"))

(misc scheme:r4drs

(title [The Revised, (sup [4]) Report on the Algorithmic Language
Scheme])

(author "William D. Clinger, Jonathan Rees")

(month "Nov")

(year "1991")

(url
"http://www.cs.indiana.edu/scheme-repository/R4RS/rdrs_toc.html"))

(article scheme:rbrs
(title "The Revised5 Report on the Algorithmic Language Scheme")
(author "Richard Kelsey, William D. Clinger, Jonathan Rees")
(journal "Higher-Order and Symbolic Computation")
(volume "11")

(number "1")
(month "Sep")
(year "1998")

(url "http://kaolin.unice.fr/Bigloo/doc/r5rs.html"))
(book as:sicp
(author "Harold Abelson, Gerald Jay Sussman")
(title "Structure and Interpretation of Computer Programs")
(year "1985")

(publisher "MIT Press")
(address "Cambridge, Mass., USA"))

6.3. Printing a Bibliography

The function the-bibliography displays the bibliography.

(the-bibliography :pred [:labels ’'number] [:count ’partial] [:sort
bib-sort/authors] [:bib-table (*bib-table*)])

:bib-table html lout latex context info xml

The bibliography table to be displayed.

81

:pred html lout latex context info xml

A predicate filtering the bibliography entries. It takes two parameters: the
bibliography entry and the the-bibliography node.

:sort html lout latex context info xml
A function sorting a list of entries.
:labels html lout latex context info xml

Specifies the style for bibliography entrieslabels. The default, number, uses
numbers to identify references, e.g., "[7]". When name+year is chosen, long
labels including the first author’s last name (and optionally the second
author’s last name) and the year of publication will be used. For instance:
"[Smith 1984]", "[Smith & Johnson 1979]", or "[Smith ef al. 1980]".

:count html lout latex context info xml

The symbol partial or full specifies the numbering to be applied. The
value partial tells Skribilo to count only the entries filtered in by :pred.
The value full tells Skribilo to count all entries, event those filtered out
by :pred.

See also bib-table?, p. 77 , make-bib-table, p. 78 , *bib-table*, p. 77,
bibliography, p. 78, noabbrev, p. 81.

Note that the name+year label style will only work if the following conventions
are followed by the author field of your bibliography entries:

* the author fields of bibliographic entries should be a string containing a
comma-separated list of full author names;

e each “full author name” should have the form first-name second-name ..

last—name.

When using the name+year label style, it is sometimes desirable to preclude auto-
matic abbreviations for some authors, e.g., when the author is the name of a consor-
tium or company rather than that of a person. In that case, you should enclose the
value of your author field in a noabbrev markup.

(noabbrev [:class] [:ident])

82

:ident html lout latex context info xml

The node identifier.

:class html lout latex context info xml
The node class.

See also the-bibliography, p. 80 , bib-sort/first-author-last-name,

p- 87.

The following example illustrates typical use of a bibliography.

Example 28. Printing a Bibliography

[Scheme , (ref :bib ’scheme:rb5rs) is functional programming language.

It exists

several books about this language , (ref :bib ’ (as:sicp
queinnec:1lisp)) .

, (linebreak 2)

, (center (bold [- Bibliography -1))

, (center (frame :border 1 :margin 2 :width 90.

(the-bibliography)))]

... produces:

Scheme [5] is functional programming language. It exists several books about

this language [2, 3].

- Bibliography -

83

[2] Christian Queinnec. Lisp In Small Pieces. Cambridge University Press,
1996.

[3] Harold Abelson, Gerald Jay Sussman. Structure and Interpretation of
Computer Programs. MIT Press, Cambridge, Mass., USA, 1985.

[5] Richard Kelsey, William D. Clinger, Jonathan Rees. The Revised5 Report
on the Algorithmic Language Scheme. In Higher-Order and Symbolic
Computation, 11(1) , Sep 1998, .

Note that the current locale setting affects the language used in bibliography
entries. For instance, if the LC_ALL environment variable is set to sv_SE.ut £8, then
phrases like “Chapter” or “Technical Report” will be written in Swedish.

6.3.1. Filtering Bibliography Entries

The :pred option isbound to a function of one argument that filters bibliography en-
tries. Itis used to control which entries must appears on a bibliography. The default
behavior is to display only the entries referenced to in the text. For instance, in order
todisplay all the entries of a bibliography, is it needed to print the bibliography with
a predicate returning always #t.

Example 29. Unfiltering Bibliography Entries

(center
(frame :border 1 :margin 2 :width 90.
(the-bibliography :pred (lambda (m n) #t))))

... produces:

http://kaolin.unice.fr/Bigloo/doc/r5rs.html

84

[1]

3]

[4]

[5]

[6]

IEEE Std 1178-1990. IEEE Standard for the Scheme Programming Lan-
guage. Institute of Electrical and Electronic Engineers, Inc., New York,
NY, 1991.

Christian Queinnec. Lisp In Small Pieces. Cambridge University Press,
1996.

Harold Abelson, Gerald Jay Sussman. Structure and Interpretation of
Computer Programs. MIT Press, Cambridge, Mass., USA, 1985.

Manuel Serrano. http://www.inriafr/mimosa/fp/Bigloo. 2006. http://www.
inriafr/mimosa/fp/Bigloo.

Richard Kelsey, William D. Clinger, Jonathan Rees. The Revised5 Report
on the Algorithmic Language Scheme. In Higher-Order and Symbolic
Computation, 11(1) , Sep 1998, .

William D. Clinger, Jonathan Rees. The Revised4 Report on the Algorith-
mic Language Scheme. Nov 1991. http://www.cs.indiana.edu/scheme-reposi-
tory/R4RS/r4rs_tochtml.

The second example, filters out the entries that are not book or that are not
referenced to from the document.

Example 30. Unfiltering Bibliography Entries

(center
(frame :border 1 :margin 2 :width 90.

(the-bibliography :pred (lambda (m n)
(and (eg? (markup-option m

"kind) ’book)

(pair? (markup-option

m "used)))))))

... produces:

http://www.inria.fr/mimosa/fp/Bigloo
http://www.inria.fr/mimosa/fp/Bigloo
http://kaolin.unice.fr/Bigloo/doc/r5rs.html
http://www.cs.indiana.edu/scheme-repository/R4RS/r4rs_toc.html
http://www.cs.indiana.edu/scheme-repository/R4RS/r4rs_toc.html

85

[2] Christian Queinnec. Lisp In Small Pieces. Cambridge University Press,
1996.

[3] Harold Abelson, Gerald Jay Sussman. Structure and Interpretation of
Computer Programs. MIT Press, Cambridge, Mass., USA, 1985.

The last example, illustrates how to change the rendering of a bibliography:.
It uses the [?mark processor: skribilo/documentation/manual.scm:315:4:] con-
struction and it defines two [?ident writer: ./bib.skb:252:21:] for displaying &bib-
entry-ident and &bib-entry-title markups. These two markups are intro-
duced by Skribe when it loads a bibliography. All fields of bibliography entries
are represented by markups whose prefix are sbib-entry-. The parent of all these
markups is the bibliography entry itself. The «bib-entry- markups are options of
there parent.

Example 31. Unfiltering Bibliography Entries

(center
(frame :border 1 :margin 2 :width 90.
(processor :engine

(make—engine ’_ :filter string-upcase)

:combinator

(lambda (el e2)

(let ((e (copy—-engine ’'_ e2)))
(markup-writer ’&bib-entry-ident e
raction
(lambda (n e)
(let* ((be (ast-parent

(o (markup-option
be ’"author))
(y (markup-option

be ’year)))

(output (markup-body
o) el)

(display ":")

(output (markup-body
y) €))))

(markup-writer ’&bib-entry-title e
raction
(lambda (n e)
(evaluate—-document (it
(markup-body n)) e)))

e))
(the-bibliography :pred
(lambda (m n)

86

(eg? (markup-option m
"kind) ’book))))))

... produces:

(IEEEEHHGHA7BY 9900999 1EEE Standard for the Scheme Programming Language.
Institute of Electrical and Electronic Engineers, Inc., New York, NY, 1991.

[CHRISH A QUIEINNECLESP) Small Pieces. Cambridge University Press,
1996.

[HARRIdMARBEISONY, GHRIALJay AGSEBSMANM:A085F and Interpretation of
Computer Programs. MIT Press, Cambridge, Mass., USA, 1985.

6.3.2. Sorting Bibliography Entries

The :sort option of the the-bibliography markup is used for sorting the bibliogra-
phy entries. There are three pre-existing functions for sorting entries, defines in the
(skribilo biblio) module (see Section 1.5).

(bib-sort/authors 1)
(bib-sort/idents 1)

(bib-sort/dates 1)

The list of entries.

See also bib-sort/first-author-last-name, p. 87.

87

The first function sorts the entries according to an alphabetic ordering on
authors. The second sorts according to an alphabetic ordering on entries identifier.
The last one sorts according to entries date.

Example 32. Sorting Bibliography Entries

(define (bib-sort/idents 1)
(sort 1 (lambda (e f) (string<? (markup-ident e) (markup-ident
£)))))

In addition, the (skribilo biblio author) module exports a fourth
procedure that sorts bibliography entries:

(bib-sort/first—author-last—-name entries)

entries

The list of entries.

See also bib-sort/authors, p. 86 , the-bibliography, p. 80 , noabbrev,
p- 81.

This procedure allows entries to be sorted according to the last name of the first
author of each bibliography entry. For this to work, the author field of bibliography
entries must follow the same conventions as for the name+year label style of
the-bibliography.

6.4. Skribebibtex
FIXME: This tool is not available as of Skribilo version 0.10.0.

Chapter 7. Computer Programs

In a document describing a computer programming language, it is common to
include excerpt of programs. Program code is typically typeset in a specific font,
with no justification, and with a precise indentation. Indentation is important
because it helps understand the code; it is thus desirable to preserve indentation in
program text. The pre text layout already allows indentation to be preserved. This
chapter presents two new functions that complement it: prog and source, both of
which are specially designed to represent computer programs in text.

7.1. Program

A prog function call preserves the indentation of the program. It may automatically
introduce line numbers.

(prog [:mark ";!"] [:linedigit] [:1line 1] [:class "prog"] [:ident])

:ident html lout latex context info xml

The node identifier.
:class html lout latex context info xml

The node class.
:line html lout latex context info xml

Enables/disables automatic line numbering. An integer value enables the
line number and specifies the number of the first line of the program. A
value of #f disables the line numbering.

:linedigit html lout latex context info xml
The number of digit for representing line numbers.
:mark html lout latex context info xml

A string or the boolean #£. If this option is a string, that string is the prefix
of line marks. These marks can be used in the ref reference. A markiden-
tifier is defined by the regular expression: [_a-zA-2] [_a-zA-20-9]*.The
prefix and the mark are removed from the output program.

89

90 Chapter 7. Computer Programs

See also source, p. 90, pre, p. 36, ref, p. 64.

Example 33. A program

(frame :width 100.
(prog :line 10 :mark "##" [
SKRIBILO = skribilo

all: demo.html demo.lout ##main-goal

demo.html: demo.skb
S (SKRIBILO) -t html demo.skb —-o demo.html

demo.lout: demo.skb
S (SKRIBILO) -t lout demo.skb —-o demo.lout
1))

(p [The main goal is specified on line , (ref :line "main-goal").])
... produces:

10. SKRIBILO = skribilo

11.

12. all: demo.html demo.lout

13.

14. demo.html: demo.skb

15. $ (SKRIBILO) -t html demo.skb -o demo.html
16.

17. demo.lout: demo.skb

18. $ (SKRIBILO) -t lout demo.skb —-o demo.lout

The main goal is specified on line 12.

7.2. Source Code

The source function extracts part of the source code and enables fontification. That
is, some words of the program can be rendered using different colors or faces.

(source :language [:tab 8] [:definition] [:stop] [:start] [:file])

: language html lout latex context info xml

The 1anguage of the source code.

7.3. Language 91

:file html lout latex context info xml

The file containing the actual source code. The file is searched in the
source-path path.

:start html lout latex context info xml

A start line number or a start marker.
:stop html lout latex context info xml

A stop line number or a stop marker.
:definition html lout latex context info xml

The identifier of the definition to extract.
:tab html lout latex context info xml

The tabulation width.

See also prog, p. 89, language, p. 94, ref, p. 64, *source-path*,p. 93.

Example 34. The source markup

(use-modules (skribilo source lisp))

(linebreak)
(frame :width 100.

(prog (source :language scheme :file "prgm.skb" :definition
"fib)))

(p [The Fibonacci function is defined on line , (ref :line "fib").1)
(linebreak)

(frame :width 100.
(prog :line 23 :mark #£
(source :language skribe :file "prgm.skb" :start 22
:stop 29)))

(p [Here is the source of the frame above:])
(linebreak)

(frame :width 100.
(prog :line 30 :mark #f
(source :language skribe :file "src/prgm2.skb"
:start (string-append ";" "!start")
:stop (string-—append ";" "!stop"))))

92

... produces:

1. (define (fib x)

2. (if (< x 2)

3. 1

4. (+ (fib (- x 1)) (fib (- x 2)))))
The Fibonacci function is defined on line 1.

23.

24.

25.

26. (define (fib x)

27. (if (< x 2)

28. 1

29. (+ (fib (- x 1)) (fib (- x 2)))))

30.
Here is the source of the frame above:

30. (frame :width 100.

31. (prog :line 23 :mark #f

32. (source :language skribe :file "prgm.skb" :start

22 :stop 29)))

Note that even awful programming languages of the C family can be high-
lighted!

Example 35. The source markup for C

(use—modules (skribilo source c))
(p [Here’s how:])

(linebreak)
(prog
(source :language c
[#include <stdlib.h>

static int foo = 10
static float bar

/* This is the function responsible
for integer chbouibification. */

float

chbouibify (int x)

{

bar = foo + (float) x / random ()
foo = (float) x * random ()
if (x > 2)

/* Great! */

93

printf ("hello world!\n")

else
printf ("lower than two\n")

return ((float) foo * bar)
1))
... produces:

Here’s how:

1. #include <stdlib.h>
2.
3. static int foo = 10;
4. static float bar;
5.
6.
7.
8. float
9. chbouibify (int x)
10. {
11. bar = foo + (float) x / random ();
12. foo = (float) x * random ();
13.
14. if (x > 2)
15.
16. printf ("hello world!n");
17. else
18. printf ("lower than twon");
19.
20. return ((float) foo * bar);
21. }

You would highlight Java™ code in a similar way, i.e., with : language java.

Files passed as the : file argument of source are searched in the current source
path, which is defined by the *source-path* SRFI-39 parameter. This parameter
contains a list of directories and its value can be obtained using (*source-path*).
Its value can be altered using the -s command-line option of the skribilo compiler
(see Chapter 14 for details).

The :language parameter of source takes a 1anguage object, which performs
the actual source highlighting. Several programming languages are currently sup-
ported: the (skribilo source lisp) module provides skribe, scheme, stk-
los, bigloo and 1lisp, which implement source highlighting for the correspond-
ing lispy dialects, while the (skribilo source c) module provides c and java.
Thus, you need to import the relevant module to get the right language, for in-
stance by adding (use-modules (skribilo source c)) atthebeginning of your
document. Additional languages can be created using the 1anguage function (see
below).

http://srfi.schemers.org/srfi-39/srfi-39.html

94 Chapter 7. Computer Programs

7.3. Language

The 1anguage function builds a language that can be used in source function call.

(language :name [:extractor] [:fontifier])

:name html lout latex context info xml
A string which denotes the name of the language.

:fontifier html lout latex context info xml
A function of one argument (a string), that colorizes a line source code.

:extractor html lout latex context info xml

A function of three arguments: an input port, an identifier, a tabulation
size. This function scans in the input port the definition is looks for.

See also prog, p. 89, source, p. 90, ref, p. 64.

Chapter 8. Equation Formatting

Skribilo comes with an equation formatting package. This package may be loaded
by adding the following form at the top of your document:

1. (use-modules (skribilo package eq))

It allows the inclusion of (complex) equations in your documents, such as, for
example, the following:

Alp) =2, (-0

This chapter will describe the syntactic facilities available to describe equations, as
well as the rendering options.

8.1. Syntax

To start with, let’s have a look at a concrete example.

Example 36. Example of a simple equation using the verbose syntax

(eq (eg:= (symbol "phi")
(eq:/ éeq:+ 1 (eqg:sqgrt 5))
)))

... produces:

1)
9 =110

In this example, the eq: sub-markups are used pretty much like any other kind of
markup. However, the resulting syntax is very verbose and hard to read.
Fortunately, the eq package allows for the use of a much simpler syntax.

95

96

Example 37. Example of a simple equation

(eg " (= phi (/ (+ 1 (sgrt 5)) 2)))

... produces:

15
0=—

Readers familiar with the Lisp family of programming languages may have already
recognized its prefix notation. Note that, unlike in the previous example, the equation
itself if quoted, that is, preceded by the ’ sign. Additionally, when referring to a
symbol (such as the Greek letter ¢), you no longer need to use the symbol markup
(see Section 3.15.3).

It is possible to create equation display blocks, where several equations are
displayed and aligned according to a particular operator.

Example 38. Inlined, displayed, and aligned equations

(p [This paragraph contains this equation: , (eq :inline? #t ’ (/
alpha

beta)). This is actually an , (emph [inline]) equation, meaning
that it

occurs within a paragraph. Typesetting has to be adjusted
accordingly.])

(eg-display

(p [This is an equation display block, within which equations
can be
aligned with one another.])

(eq :ident "eg-limit-b-over—-1"
:renderer (and %have-lout? ’lout)
ralign-with ’'=
' (= (limit (/ lambda beta) 0

(apply IPL n k))

(/ (expt (+ alpha beta) k)

(* beta
(sum :from (= x 0)
:to (- k 1)
(* (combinations k Xx)
(expt beta (- k 1 x))

(expt alpha x)))))))

8.3. Summary 97

[This equation can be simplified as follows:]

(eq :ident "eg-limit-b-over-l-simplified"
:renderer (and %$have-lout? ’lout)
ralign-with "=
I<=

(/ (expt (+ alpha beta) k)
(- (expt (+ alpha beta) k)
(expt alpha k)))

(limit (/ lambda beta) 0
)

(apply IPL n k)))))

... produces:

This paragraph contains this equation: B Thisisactually an inline equation,
meaning that it occurs within a paragraph. Typesetting has to be adjusted ac-
cordingly.

This is an equation display block, within which equations can be aligned with
one another.

k
imatopga{tpL{n k) =~ B 1)
ety (5)e)
This equation can be simplified as follows:
@B o
W = limatop}—0(IPL(n, k)) (8.2)
o+B) —o

8.2. Rendering

8.3. Summary

The options available for the top-level eq markup are summarized here:

98 Chapter 8. Equation Formatting

(eq [:number #t] [:mul-style ’space] [:div-style ’'over] [:renderer]
[:align—-with] [:inline? 'auto] [:class "eqg"] [:ident])
:ident html lout latex context info xml

The node identifier.
:class html lout latex context info xml

The node class.

:inline? lout
If auto, Skribilo will automatically determine whether the equation is to
be "in-line". Otherwise, it should be a boolean indicating whether the equa-
tionis toappear "in-line", i.e., within a paragraph. If the engine supportsit,
it may adjust various parameters such as in-equation spacing accordingly.

:number lout

If true, then a number is automatically assigned to the equation and
displayed. If itis a string, then that string is used as the equation’s number.
If #£, then the equation is left unnumbered. Note that this option is only
taken into account for displayed equations.

:renderer

The engine that should be used to render the equation. This allows, for
instance, to use the Lout engine to render equations in HTML.

:mul-style lout

A symbol denoting the default style for multiplications. This should be
one of space, cross, asterisk or dot.

:div-style lout
A symbol denoting the default style for divisions. This should be one of
over, fraction, div and slash. Per-eq:/ :div-style options override
this setting.

:align-with lout
Within a eq-display block, this should be a symbol specifying according
to which operator equations are to be aligned with one another.

Equation display blocks can be defined using eg-display. Display blocks
define the scope of the alignment among equations as specified by the :align-with
options of eq.

8.3. Summary 99

(eg-display [:class "eg-display"] [:ident])

:ident html lout latex context info xml

The node identifier.
:class html lout latex context info xml

The node class.

Chapter 9. Pie Charts

Skribilo contains a pie-chart formatting package, located in the (skribilo pack-
age pie) module. It allows users to produces represent numeric data as pie charts
as in the following example:

thers

Use of Document Formabtiagckystems

Skribilo
LaTeX

Lout

A defaultsmﬁflementation, which uses Ploticus as an external program, is
available for all engines. There is also a specific implementation for the Lout engine
which relies on Lout’s own pie-chart package. In the latter case, you don’t need to
have Ploticus installed, but you need it in the former.

Currently it only supports slice-coloring, but support for textures (particularly
useful for black & white printouts) could be added in the future.

9.1. Syntax

Let us start with a simple example:

Example 39. Example of a pie chart

101

http://ploticus.sf.net

102

(pie :title [Casualties in the Israel-Lebanon 2006 Conflict
(source:
English Wikipedia page, 2006-07-23)]

:total 450

:ident "pie-lebanon-2006"

:labels ’outside :fingers? #t

(slice :weight 8 :color "black" [Hezbollah militants])
(slice :weight 42 :color "blue" [soldiers])

(slice :weight 317 :color "red" :detach? #t
[civilians (, (sliceweight :percentage? #t)%)1))

... produces:

Casualties in the Israel-Lebanon 2006 Conflict (source:
English Wikipedia page, 2006-07-23)

soldiers
civilians (70.44444444

zbollah militants

This illustrates the three markups provided by the pie package, namely pie,
slice,and sliceweight. This last markup returns the weight of the slice it is used
in, be it as a percentage or an absolute value. Note that the :total option of pie
can be used to create pie charts no entirely filled.

Various options allow the pie layout to be controlled:

Example 40. Specifying the layout of a pie chart

(pie :title [Casualties of the Conflict in Iraq since 2003 (source:

103

English Wikipedia page, 2006-07-23)]1]
:ident "pie-irag-2006"
:fingers? #f
:labels ’inside
:initial-angle 45
:radius 2

(slice :weight 100000 :color "red" :detach? #t

[civilians (, (sliceweight :percentage? #t)%)])
(slice :weight (+ 2555 229) :color #xeeeeee [soldiers]))

... produces:

Casualties of the Conflict in Iraq since 2003 (source:
English Wikipedia page, 2006-07-23)

civilians

The available markups and their options are described below.

(pie [:labels ’outside] [:fingers? #t] [:radius 3] [:total]
[:initial—-angle 0] [:title "Pie Chart"] [:class "pie"] [:ident])

:ident html lout latex context info xml

The node identifier.
:class html lout latex context info xml

The node class.
:title html lout latex context info xml

The title of the pie chart.
:initial-angle html lout latex context info xml

The initial angle of the pie, in degrees.

104 Chapter 9. Pie Charts

:total html lout latex context info xml

If a number, specifies the "weight" of the whole pie; in this case, if the pie’s
slices don’t add up to that number, then part of the pie is shown as empty.
If #£, the total that is used is the sum of the weight of each slice.

:radius html lout latex context info xml
The pie’s radius. How this value is interpreted depends on the en-
gine used.

:fingers? lout

Indicates whether to add "fingers" (arrows) from labels to slices when
labels are outside of slices.

:labels html lout latex context info xml

A symbol indicating where slice labels are rendered: outside to have
them appear outside of the pie, inside to have them appear inside the pie,
and legend to have them appear in a separate legend.

Seealso slice,p. 104.

(slice [:detach?] [:color "white"] [:weight 1] [:class "pie-slice"]
[:ident] label)

:ident html lout latex context info xml

The node identifier.
:class html lout latex context info xml

The node class.
:weight html lout latex context info xml

An integer indicating the weight of this slice.

:color html lout latex context info xml
The background color of the slice.

:detach? html lout latex context info xml

Indicates whether the slice should be detached from the pie.

9.1. Syntax 105

label

Thelabel of thenode. It can contain arbitrary markup, notably instances of
sliceweight. However, some engines, such as the Ploticus-based render-
ing, are not able to render markup other than s1iceweight; consequently,
they render the label as though it were markup-free.

See alsopie, p. 103, sliceweight,p. 105.

As seen in the examples above, the body of a slice markup can contain
instances of s1iceweight to represent the weight of the slice:

(sliceweight [:percentage?] [:class "pie-sliceweight"] [:ident])

:ident html lout latex context info xml

The node identifier.
:class html lout latex context info xml

The node class.
:percentage? html lout latex context info xml

Indicates whether the slice’s weight should be shown as a percentage of
the total pie weight or as a raw weight.

See also slice, p. 104.

Chapter 10. Slide Package

This chapter describes the facilities Skribilo offers authoring slides. As usual, in
order to access the functionalities described in this chapter, the (use-modules
(skribilo package slide)) expression must be introduced at the beginning of
the document.

10.1. Slides and Slide Topics

A slide function call creates a slide.

(slide :title [:image] [:bg] [:transition] [:v£fill] [:vspace]
[:number #t] [:toc #t] [:class] [:ident])

:ident html lout latex context info xml

The node identifier.
:class html lout latex context info xml

The node class.

(title html lout latex
The title of the slide.
:number html lout latex

The number of the slide (a boolean or an integer).
:toc html lout latex

This argument controls if the slide must be referenced in the table of
contents and the outline slide that introduces a slide-topic (see below).

:vspace latex

The boolean #f or an integer representing the vertical space size between
the title and the body of the slide.

cvEill latex

A boolean that is used to control whether a LaTeX \vfill is issued at the
end of the slide.

107

108 Chapter 10. Slide Package

:transition html latex

The boolean #f or a symbol in the list (split blinds box wipe dis-
solve glitter).

:bg html
The background color of the slide.
:image latex

The background image of the slide.

Optionally, one may group slides into topics and subtopics. Topics and subtopics
are just logical grouping under a given title that are meant to provide structure
to a set of slides. With their :outline? option, these two markups can be used to
automatically produce an outline at the beginning of each new (sub)topic, which
reminds the audience of the current position within the talk.

(slide—-topic :title [:class] [:ident] [:toc #t] [:unfold? #t]
[:outline? #t])

(slide—-subtopic :title [:class] [:ident] [:toc #t] [:unfold?]

[:outline?])

:ident html lout latex context info xml

The node identifier.
:class html lout latex context info xml

The node class.

:title html lout latex context info xml
The title of a topic.
:outline? html lout latex context info xml

A boolean (i.e., #t or #f) telling whether an outline should be produced
at the beginning of this topic. The outline will typically list the titles of
the different topics, as well as the titles of the slides under the current
topic. Note that s1ides whose :toc option is #f will not be shown in the
outline.

:unfold? lout latex context info xml

If #t, then the outline will also show the contents of the current topic.

10.1. Slides and Slide Topics 109

:toc

This argument controls if the slide must be referenced in the table of
contents and the outline slide that introduces a s1ide-topic (see below).

This package understands the following additional customs (see Section
13.1.4):

slide-outline-title
The title of outline slides. By default, no title is produced.

slide-outline—active-color

The color in which the current slide topic is displayed in outline slides.

slide-outline-inactive-color
The color in which inactive slide topics are displayed in outline slides.

10.2. Pause

A slide-pause function call introduces a pause in the slide projection. This may
not be supported by all engines.

(slide—-pause)

10.3. Slide Vertical Space

The s1lide-vspace introduces a vertical space in the slide.

(slide-vspace [:unit ’‘cm] val)

:unit lout latex

The unit of the space.

110

Chapter 10. Slide Package

val

The size of the vertical space.

10.4. Slide Embed Applications

Embed an application inside a slide.

(slide—embed :command [:alt] [:transient—-opt] [:transient]
[:rgeometry] [:geometry] [:geometry—-opt "-geometry"] [:arguments
"01)

: command lout latex

The binary file for running the embedded application.

:arguments lout
Additional arguments to be passed to the application (a list of strings).

: geometry-opt html lout latex context info xml
The name of the geometry option to be sent to the embedded application.

:geometry lout latex
The geometry value to be sent.

: rgeometry latex
A relative geometry to be sent.

:transient-opt latex
The name of the transient option to be sent to the embedded application.

:transient latex

The transient value to be sent.
ralt html lout latex context info xml

An alternative Skribilo expression to be used if the output format does not
support embedded application.

10.5. Example

10.5. Example

Here is a complete example of Skribilo slides:

Example 41. Example of Skribilo slides

(use—-modules (skribilo package slide))

(document :title (color :fg "red" (sf "Skribilo Slides"))
:author (author :name (it [Bob Smith])
caffiliation [The Organization]
:address (ref :url "http://example.org/"))

(slide :title "Table of Contents" :number #f

(p
(resolve (lambda (n e env)
(let ((slides (search-down (lambda (n)
(is—markup?

n ’'slide))
(ast—document n))))
(itemize
(map (lambda (n)
(item (ref :handle (handle n)
:text (markup-option n
ctext))))
slides)))))))
(slide :title "Introduction" :vspace 0.3

(p [This is a simple slide, not grouped in any topic.]))
(slide-topic :title "Interactive Features" :outline? #t
(slide :title "X11 Clients" :toc #t :vspace 0.3

(itemize
(item "xlock")
(item "xeyes")
(item "xterm")))

(slide :title "Xclock" :toc #t :vspace 0.3

(center (sf (underline "The Unix xclock client")))
(slide-vspace 0.3)

(slide-pause)
(slide—embed :command "xlock"
calt (frame "Can’t run embedded
application™)))))

111

Chapter 11. Standard Packages

This chapter describes the standard packages that come with Skribilo. Additional
packages may be found from the Skribe web page, but they may require slight
modifications to work correctly with Skribilo.

In order to use the facilities described in the following sections, the Skribilo
source file must contains statements such as:

(use-modules (skribilo package THE-PACKAGE))

where THE-PACKAGE is the desired package. GNU Guile users will recognize that
this is Guile’s standard way to use Scheme modules. The effect of the use-modules
clause is to insert the bindings exported by THE-PACKAGE into the current module’s
name space. Note that third-party Skribilo packages can have arbitrary Guile
module names. And of course, the use-modules clause can be used to import any
Guile module, not just Skribilo packages.

11.1. Articles

11.1.1. acmproc

This package enables producing LaTeX documents conforming to the ACM
proceeding (ACMPROC) style. It introduces the markup abstract:

(abstract :postscript [:class "abstract"])

:class html lout latex context info xml

The node class.
:postscript html lout latex context info xml

The URL of the PostScript version of the paper.

113

http://www.inria.fr/mimosa/fp/Skribe

114 Chapter 11. Standard Packages

11.1.2. ifp

This package enables producing LaTeX documents conforming to the Journal of
Functional Programming (JFP) style. It introduces the markup abstract:

(abstract :postscript)

:postscript html lout latex context info xml

The URL of the PostScript version of the paper.

11.1.3. 1ncs

This package enables producing LaTeX documents conforming to the Lecture
Notes on Computer Science (LNCS) style. It introduces the markups abstract and

references:

(abstract :postscript)

:postscript html lout latex context info xml

The URL of the PostScript version of the paper.

(references [:sort])

:sort html lout latex context info xml

A sort procedure, as for the-bibliography.

See also the-bibliography, p. 80,bib-sort/authors,p. 86.

11.2. Languages

Currently, native language support in Skribilo is rudimentary, limited to the follow-
ing package. In the future, it should be possible to specify a document’slanguage so

11.2. Languages

115

that the output engine behaves accordingly, e.g., by choosing the right typographi-

cal rules and the right phrases.

11.2.1. french

Enables French typesetting and typographical rules.

11.3. letter

This package is to be used to authoring simple letters. It redefines the document

markup.

(document :author :date :where [:class

:ident
The node identifier.

:class

The node class.

:where

The location where the letter is posted.

:date

The date of the letter.

:author

The author of the letter.

11.4. Web

11.4.1. web-book

"letter"] [:ident])

html lout latex context info xml

html lout latex context info xml

html lout latex context info xml

html lout latex context info xml

html lout latex context info xml

This package provides a convenient mode for rendering books (i.e., documents
made of chapters and sections) in HTML. It modifies the left-margin custom of
the HTML engine (see HTML customs) such that the left margin of each HTML file
produced contains a menu allowing for quick navigation within the HTML doc-

ument.

116 Chapter 11. Standard Packages

11.4.2. web-book2

This package provides a different way to render books in HTML. Concretely, it
prepends a small table of contents to each chapter, section, etc., that appears in an
HTML file of its own, making it easy to move around the various HTML files of
the document. Compared to web-book, it does not clutter the left margin of the
HTML pages.

Unlike web-book, this package is “purely functional” in that it does not modify
the HTML engine customs and writers.

11.4.3. html-navtabs

The html-navtabs package enables quick navigation inside HTML documents
by means of tabs. The produced HTML code uses CSS declarations. The html-
navtabs package does not introduce any new markups. It is configured via addi-
tional engine customs.

11.4.3.1. HTML Engine Customization

html-navtabs is to be used in conjunction with the html-engine engine. Specifi-
cally, it adds the following new customization to this engine:

html-navtabs #<<markup> (it/it9061) 140436294179408>
The tabs.

html-navtabs-padding 20.0
Padding above tabs.

html-navtabs-bar-background #f

Bar background color.

11.4.3.2. Additional Container Options

html-navtabs introduces two new containers (i.e., a document chapter section,
...) attributes: :html-tabs-bar and :no-tabs. The attribute :html-tabs-bar may
contain any Skribe expression. It controls the content of the navtabs sub-bar (i.e., a
small line above the tabs). The attribute :no-tabs disable tabs for this container.

11.4. Web 117

11.4.3.3. Example
Please see the HTML version of the manual for an example.

Chapter 12. Standard Library

This section describes Skribilo’s standard library.

12.1. File Functions

The function include is particularily useful to spread a long document amongst
several files.

(include file)

file

The file containing the nodes to be included. These nodes are included in
the document in place of the include call.

See also *document-path*, p. 119.

The given file is searched in the current document path.

Skribilo provides functions to deal with paths. These functions are related to
the path that can be specified on the command line, when the Skribilo compiler is
invoked (see Chapter 14.)

(*document—-patht*)

Seealso include,p. 119, *image-path*,p. 47, *bib-path*,p. 79, *source-
path*,p. 93.

document-path is a procedure as returned by SRFI-39 make-parameter. As
such, (*document-path*) returns the current document path, while (*document-
path* 7 ("." "/some/path")) changes the value of the current path. This is
equivalent to Skribe’s skribe-path and skribe-path-set! functions. The value

119

http://srfi.schemers.org/srfi-39/srfi-39.html

120 Chapter 12. Standard Library

of *document-path* can also be changed using the -I command-line option of the
compiler (see Chapter 14 for details).

12.2. Configuration Functions

Several functions describing the configuration of Skribilo are exported by the
(skribilo config) module. First, the skribilo-version function returns the

version of Skribilo being used as a string.

(skribilo-version)

For instance, the following piece of code:

[This manual documents version , (bold (skribilo-version)) of
Skribilo.]

produces the following output

This manual documents version 0.10.0 of Skribilo.

The skribilo-url function returns, not surprisingly, the URL of the project:

(skribilo—url)

The skribilo-module-directory returns the directory under which Skribilo
modules were installed:

(skribilo-module-directory)

Similar information can be obtained using the skribilo-config program, as
described in Section 15.

Chapter 13. Engines

Skribilo documents can be rendered, or output, in a variety of different for-
mats. When using the compiler, which format is used is specified by the -target
command-line option (see Chapter 14). This command-line option actually spec-
ifies the engine or “back-end” to be used, which is roughly a set of procedures
that translate the input document into the output format. For instance, passing
—target=html to the compiler instructsit to produce an HTML document using the
html engine.

This chapter describes procedures allowing the manipulation of engines
in Skribilo documents or modules (creation, customization, etc.), as well as the
available engines. Currently, the available engines are:

* HTML Engine

* Lout Engine

* LaTeXEngine

* ConTeXt Engine
* Info Engine

* XML Engine

Engine customization provides tight control over the output produced for each par-
ticular engine. In particular, it allows the style for each output to be fine-tuned, be it
HTML, PDF via Lout, or anything else. However, note that such fine-tuning usually
requires good knowledge of the output format (e.g., HTML/CSS, Lout, LaTeX).

13.1. Manipulating Engines

13.1.1. Creating Engines

The function make-engine creates a brand new engine.

121

122 Chapter 13. Engines

(make—engine [:info 7 ()] [:custom ' ()] [:symbol-table ' ()]
[:delegate] [:filter] [:format "raw"] [:version ’'unspecified]
ident)

:version

The version number.

:format

The output format (a string) of this engine.
:filter

A string filter (a function).
:delegate

A delegate engine.
:symbol—-table

The engine symbol table.
:custom

The engine custom list.
:info

Miscellaneous.
ident

The name (a symbol) of the new engine.

The function copy-engine duplicates an existing engine.

(copy—engine [:custom] [:symbol-table] |[:delegate] [:filter]

[:version ’unspecified] ident e)

:version

The version number.
:filter

A string filter (a function).
:delegate

A delegate engine.

13.1. Manipulating Engines 123

:symbol-table
The engine symbol table.
:custom

The engine custom list.
ident

The name (a symbol) of the new engine.

The old engine to be duplicated.

13.1.2. Retrieving Engines

The find-engine function searches in the list of defined engines. It returns an
engine object on success and #f on failure.

(find-engine |[:version ’‘unspecified] id)
g

:version
An optional version number for the searched engine.
id

The name (a symbol) of the engine to be searched.

13.1.3. Engine Accessors

The predicate engine? returns #t if its argument is an engine. Otherwise, it
returns #£.In other words, engine? returns #t for objects created by make-engine,

copy—-engine, and find-engine.

(engine? obj)

obj
The checked object.

124 Chapter 13. Engines

The following functions return information about engines.

(engine-ident obj)
(engine—-format obj)
(engine—customs obj)
(engine—filter obj)

(engine-symbol-table obj)

obj

The engine.

13.1.4. Engine Customs

Engine customs are locations where dynamic informations relative to engines can
be stored. Engine custom can be seen a global variables that are specific to engines.
The function engine-custom returns the value of a custom or #f£ if that custom is
not defined. The function engine-custom-set! defines or sets a new value for a
custom.

(engine—custom e id)

The engine (as returned by find-engine).
id

The name of the custom.

(engine—custom-set! e id val)

The engine (as returned by find-engine).

13.1. Manipulating Engines 125

id
The name of the custom.

val

The new value of the custom.

In the documentation of available engines that follows, a list of available
customs is shown for each engine, along with each custom’s default value and
a description.

13.1.5. Writing New Engines

Writing new engines (i.e., output formats) and making them available to Skribilo
is an easy task. Essentially, this boils down to instantiating an engine using
make-engine and registering markup writers using the markup-writer procedure
for all supported markups (e.g., chapter, bold, etc.).

Most likely, you will want to make your new engine visible so that find-en-
gine and consequently the ~target command-line option can find it. To that end,
a few rules must be followed:

1. your engine must be enclosed in a Guile Scheme module under the skribilo
engine hierarchy; for instance, if the engine is named foo, then it should be in
amodule called (skribilo engine foo);

2. the engine itself as returned by make-engine must be bound, in that module,
to a variable called, say, foo-engine;

3. finally, the (skribilo engine foo) module mustbe in Guile’s load path; for
instance, you can adjust the GUILE_LOAD_PATH environment variable.

This is all it takes to extend Skribilo’s set of engines! Note that this mechanism is
the same as that of readers (see Section 2.6).

'FIXME: Markup writers are not currently documented, but looking at the source of an engine will give
you the idea, trust me.

126 Chapter 13. Engines

13.2. HTML Engine

The HTML engine produces—guess what' —HTML output. It can be customized in
various ways, as shown below.

13.2.1. HTML Customization

favicon #f

The name of an image file of the URL image. The favicon custom can be either
bound to a string which is the name of the image, or to a procedure of two
arguments, a node and an engine that returns the file name of the icon. This
can be used to use different icons per chapter or section.

charset "UTF-8"

The character set used for the document.

javascript #f

Enable/disable Javascript support.

head #f
A string included in the HTML header.

css ()

The URL or a list of URLSs of CSS used by the document.

inline-css ()

The file or a list of files inlined inside the header’s style section. The custom
inline-css should be used in replacement of the css custom in order to
produce stand alone HTML documents.

E 0
A URL or a list of URLs of JavaScript programs used by the document.

emit—-sui #f

Emit a SUI file for this document (see Section 4.4 for details).

http://www.w3.org/TR/REC-CSS2/

13.2. HTML Engine 127

background #f

The background color of the document.

foreground #f

The foreground color of the document.

margin-padding 3
Margins padding.
left-margin #£

A procedure of two arguments producing the left margin of the document.

chapter-left-margin #£

A procedure of two arguments producing the left margin of the document.

section-left-margin #f

A procedure of two arguments producing the left margin of the document.

left-margin-font #f

The font of the left margin.

left-margin-size 17.0

The width of the left margin.

left-margin-background #f

The background color of the left margin.

left-margin-foreground #£

The foreground color of the left margin.

right-margin #f

A procedure of two arguments producing the right margin of the document.

chapter-right-margin #f

A procedure of two arguments producing the right margin of the document.

128

section-right-margin

Chapter 13. Engines

#£

A procedure of two arguments producing the right margin of the document.

right-margin-font

The font of the right margin.

right-margin-size

The width of the right margin.

right-margin-background

The background color of the right margin.

right-margin-foreground

The foreground color of the right margin.

author—-font

The author font.

title-font

The title font.

title-background

The title background color.

title-foreground

The title foreground color.

file-title-separator

(unquote

(

" —

#f

17.0

#f

#£

#f

#f

#£

#£

"))

A text to be inserted in between the document title and the chapter or section

title when the chapter or section is rendered in a separate file.

file—-name-proc

(unquote html-file-default)

A two-argument procedure that should return a string. This procedureis to be
passed anode and an engine and should return a file name for the HTML page

corresponding to this node.

13.2. HTML Engine 129

index—-header—-font-size #f

The index header font size.

chapter—-number->string number->string

A procedure of one argument for rendering chapter numbers.

chapter-file #£

A boolean specifying if chapters are rendered in separate HTML file (see
chapterlnarkup)

section-title—-start "<h2>"

The HTML sequence for starting section title.

section-title-stop "</h2>"

The HTML sequence for stopping section title.

section-title—-background #£

The background color of section title.

section-title-foreground #f

The foreground color of section title.

section-title—-number-separator

The section title number separator.

section—-number->string number->string

A procedure of one argument for rendering section numbers.

section—-file #£

A boolean specifying if sections are rendered in separate HTML file (see
section markup).

subsection-title-start "<h3>"

The HTML sequence for starting subsection title.

130

subsection-title-stop

The HTML sequence for stopping subsection title.

subsection-title-background

The background color of subsection title.

subsection-title-foreground

The foreground color of subsection title.

subsection-title—-number-separator

The subsection title number separator.

subsection—-number->string

Chapter 13. Engines

"</h3>"

#£

#£

number->string

A procedure of one argument for rendering subsection numbers.

subsection-file

#f

A boolean specifying if subsections are rendered in separate HTML file (see

subsection markup).

subsubsection-title—-start

The HTML sequence for starting subsubsection title.

subsubsection-title-stop

The HTML sequence for stopping subsubsection title.

subsubsection-title-background

The background color of subsubsection title.

subsubsection-title-foreground

The foreground color of subsubsection title.

subsubsection-title-number-separator

The subsubsection title number separator.

subsubsection-number->string

"<h4>"

"</h4>"

#f

#£

number->string

13.2. HTML Engine 131

A procedure of one argument for rendering subsubsection numbers.

subsubsection-file #f

A boolean specifying if subsubsections are rendered in separate HTML file (see
subsubsectionlnarkup)

source—color #t

A boolean enabling/disabling color of source code (see source markup).

source-comment—-color "$ffae00"

The source comment color.

source-error-color "red"

The source error color.

source—-define-color "$#6959cft"

The source define color.

source-module-color "#1919af"

The source module color.

source-markup-color "#1919af"

The source markup color.

source-thread-color "#ad4386"

The source thread color.

source-string-color "red"

The source string color.

source-bracket-color "red"

The source bracket color.

source—-type—-color "#00cfOoO"

The source type color.

132 Chapter 13. Engines

image—format ("png" "gif" "jpg" "jpeg")

The image formats for this engine.

13.3. Lout Engine

The Lout engine produces documents for the Lout typesetting system, which
is then suitable for the production of PostScript/PDF files for printing. Lout is a
typesetting system comparable to TeX/LaTeX in functionality. However, it is based
on a lazy, purely functional programming language and makes it easy to customize
document layout; it is also lightweight compared to typical LaTeX installations,
consuming less than 10 MiB of disk space.

Skribilo’s Lout engine provides lots of customization opportunities (currently
more than the LaTeX engine), which are shown below. It also enhances Lout by
adding new features: PDF bookmarks, high-level interface to the use of dropped
capitals, improved paragraph indentation, etc.

13.3.1. Lout Customization

document-type doc

A symbol denoting the underlying Lout document type, i.e., one of doc (the
default), report, book or slides.Note that these document types are not inter-
changeable: s1lides should be used only when using the s1ides package; re-
port and book do not permit text in the body of a document outside chapters.
Also, these document types provide different layout features, book being the
“richest” one; in addition, some of the customs below do not apply to all these
document types.

document-include auto

Document style file include line (a string such as @Include { my-doc-
style.lout })or the symbol auto in which case the include file is deduced
from document-type

includes "@SysInclude { tbl }\n"

A string containing @ Include directives.

http://www.cs.usyd.edu.au/~jeff/

133

inline-definitions-proc (unquote lout-definitions)

A procedure that is passed the engine and returns Lout definitions to be
included at the beginning of the document as a string.

encoding "ISO0-8859-1"

The encoding of the output document'. As of Lout 3.39, only "IS0-8859-1"
and "IS0-8859-2" are supported.

initial-font "Palatino Base 10p"

Lout specification of the document font.

initial-break (unquote (string-append "unbreakablefirst "

"unbreakablelast " "hyphen adjust 1.2fx"))
Lout specification of the default paragraph breaking style.

initial-language "English"

Lout specification of the document’s language. This is used to select hyphen-
ation rules, among other things.

column—number 1

Number of columns.

first-page—-number 1
Number of the first page.
page-orientation portrait

A symbol denoting the page orientation, one of portrait, landscape,

reverse-portrait Or reverse-landscape.

cover—sheet? #t

For report, this boolean determines whether a cover sheet should be pro-
duced. The doc-cover-sheet-proc custom may also honor this custom for
doc documents.

'This option is supported when Guile 2.0+ is being used.

134

date-line #t

For report and slide, determines whether a date line will appear on the first
page (if it’s a boolean), or what date line will appear (if it's not a boolean).

abstract #f

For report, this can be an arbitrary Skribe expression for use as an abstract.

abstract-title #t

For report, the title/name of the abstract. If #f then no abstract title is pro-
duced. If #t, then a default abstract title is chosen according to initial-lan-

guage.

publisher #f
For book, the publisher.

edition 4f

For book, the edition.

before-title—-page #£f

For book, an expression that will appear before the title page.

on-title-page #f

For book, the expression used as the title page.

after-title-page #£

For book, an expression that will appear right after the title page.

at-end #f

For book, an expression that will appear at the end of the book, on a page of
its own.

optimize-pages? #f

A boolean indicating whether to optimize pages. Refer to Lout’s User’s Guide
for caveat.

doc—-cover—-sheet—-proc (unquote lout-make-doc—-cover-sheet)

135

For doc, a procedure that produces the title or cover sheet. When invoked, the
procedure is passed the document node and the engine.

bib-refs—-sort—-proc #£

Kept for backward compability, do not use.

paragraph-gap "\n//1.0vx @ParaIndent Q@Wide &{0i}\n"

Lout code for paragraph gaps. Note that the default value is not @PP as one
would expect but is instead similar to @PP with @ParaGap equal to 1.0vx,
which means that a regular inter-line space is used as inter-paragraph space.
This differs from Lout’s default where the inter-paragraph space is larger than
the inter-line space, but looks better, at least in the author’s eyes.

first—-paragraph—-gap "\n@LP\n"

Gap for the first paragraph within a container (e.g., the first paragraph of a
chapter). This allows paragraphs to have a different indentation depending
on whether they are the first paragraph of a section or not. By default, the first
paragraph is not indented and subsequent paragraph are indented.

drop-capital? #f

A boolean or predicate indicating whether drop capitals should be used at the
beginning of paragraphs. When invoked, the predicate is passed the node at
hand and the engine.

drop-capital-lines 2

Number of lines over which dropped capitals span. Only 2 and 3 are currently
supported.

use—header—-rows? #£f

For multi-page tables, setting this to #t allows header rows to be repeated on
each new page. However, it appears to be buggy at the moment.

use—lout—-footnote—numbers? #£f

Tells whether to use Lout’s footnote numbering scheme or Skribilo’s number.
Using Lout’s numbering scheme may yield footnote numbers that are different
from those obtained with other engines, which can be undesirable.

136

transform-url-ref-proc (unquote lout-split-external-link)

A procedure that takes a URL re f markup and returns a list containing (maybe)
one such ref markup. This custom can be used to modify the way URLs
are rendered. The default value is a procedure that limits the size of the text
passed to Lout’s @ExternalLink symbols to work around the fact that @Ex-
ternallink objects are unbreakable. In order to completely disable use of
@ExternalLink, just set it to markup-body.

toc—-leader

A string, which is the leader used in table-of-content entries.

toc—-leader—-space "2.5s8"

Inter-leader space in table-of-contents entries.

toc—-entry—-proc (unquote lout-make-toc—-entry)

Procedure that takes a large-scale structure (chapter, section, etc.) and the
engine and produces the number and possibly title of this structure for use
in table-of-contents.

lout-program—name "lout"

The 1out program path, only useful when producing lout-illustration on
other engines.

lout-program-arguments 0

List of additional arguments that should be passed to lout, e.g., ("-I foo"
"-T bar").

make-pdf-docinfo? #t

Tells whether to produce PDF "docinfo", i.e., meta-information with title,
author, etc.

pdf-title #t

Title for use as the PDF document meta-information. If #t, the document’s:title
is used.

pdf-author #t

137

Author for use as the PDF document meta-information. If #t, the document’s
:author is used.

pdf-keywords #£

Keywords (a list of string) in the PDF document information. This custom is
deprecated, use the :keywords option of document instead.

pdf-extra-info (("SkribiloVersion" (unquote (skribilo-ver-—

sion))))
A list of key-value pairs (strings) to appear in the PDF meta-information.

make-pdf-outline? #t

Tells whether to produce a PDF outline (aka. "bookmarks").

pdf-bookmark-title-proc (unquote lout-pdf-bookmark-title)

Procedure that takes a node and an engine and return a string representing the
title of that node’s PDF bookmark.

pdf-bookmark—-node-pred (unquote lout-pdf-bookmark—-node?)

Predicate that takes a node and an engine and returns true if that node should
have a PDF outline entry.

pdf-bookmark-closed-pred (unquote (lambda (n e) (not (and
(markup? n) (memg (markup—-markup
n) (quote (chapter slide slide-top-
ic)))))))

Predicate that takes a node and an engine and returns true if the bookmark for
that node should be closed ("folded") when the user opens the PDF document.

color? #t

Indicate whether to use colors or not.

source—color #t

A boolean enabling/disabling color of source code (see source markup).

source-comment—-color "$ffac00"

The source comment color.

138

source-define-color

The source define color.

source-module—-color

The source module color.

source-markup-color

The source markup color.

source-thread-color

The source thread color.

source-string-color

The source string color.

source-bracket-color

The source bracket color.

source-type-color

The source type color.

13.3.2. Additional Markup

"#6959cft"

"#1919af"

"#1919af"

"#ad4386"

n red"

" red"

"#00cfo0o"

The (skribilo engine lout) module also exports a new markup called lout-
illustration, which providesan engine-independent way to includeillustrations
written in Lout, such as @Diag pictures. When an engine other than Lout is used,
lout-illustration are first automatically translated to EPS (using Lout’s @T1-
lustration) and then to whatever image format is supported by the engine (see

Section 3.12).

(lout—-illustration :alt

illustration..)

139

:ident html lout latex context info xml

An identifier. This identifier is also used as the basis of the EPS file name
with non-Lout engines.

:file
If different from #£, this specifies a file where the Lout illustration

is stored.
ralt

A string displayed on display devices not capable of displaying images,
as for image.

illustration..

The illustration itself if :file is #£.

The following example shows a simple diagram. When using the 1out engine,
the diagram is integrated in-line in the document. When using other engines, it is
integrated using image.

Example 42. A Lout illustration

(use-modules (skribilo engine lout))

(lout-illustration :ident "document-toolchain"
:alt "a document toolchain" "

This is Lout code to produce a diagram.
@Diag
aoutline { circle }
afont { Courier Base 1f }
boutline { circle }
bfont { Palatino Slope 2f }
bpaint { black }
bformat { white @Color @Body }
coutline { curvebox }
coutlinestyle { dotted }
doutline { curvebox }

QTbl
strut { yes }
indent { ctr }
aformat { @Cell A @Cell marginhorizontal { 2.0fe } B \
@Cell C @Cell D }
amargin { 1.0fe }

@Rowa D { W:: @DNode HTML }

QRowa A { A:: @ANode txt } C { P:: @CNode Lout }
D { X:: @DNode PostScript }

@Rowa A { B:: @ANode skr } B { S:: @BNode Skribilo }
C { Q:: @CNode @LaTeX }

140

QRowa A {
D {

C::
Y08 3
QRowa D { Z::

/7

input arrows
@Arrow from
@Arrow from
@Arrow from

-

arrows to 1
@Arrow from {
@Arrow from {
@Arrow from ({

PS/PDF incomin
@Arrow from
@Arrow from
@Arrow from
@Arrow from
@Arrow from
@Arrow from

peiioch oF @Ruv i}

HTML and Info
@Link from { S }
@QLink from { S }

... produces:

@ANode rss } C { R:: QCNode ConTeXt }
@DNode PDF }

@DNode Info }

} to { S}

} to { S}

} to { S}

rmediate files

} to { P}

} to { QO }

} to { R }

g arrows

} to { X}

} to { Y }

} to { X}

} to { Y }

} to { X}

} to { Y }

to } arrow { yes } path { vhcurve }
to } arrow { yes } path { vhcurve }

~ HTML

PostScript

= Info

13.3. Lout Engine 141

13.4. LaTeX Engine

Not surprisingly, the LaTeX engine produces LaTeX output, which can then be used
to produce high-quality PostScript of PDF files for printing.

13.4.1. LaTeX Customization

documentclass "\\documentclass{article}"

A string declaring the LaTeX document class.

encoding "UTF-8"

The encoding of the output document’.

class—has—chapters? #£

A boolean indicating whether the document class has a chapter markup. If
#£, then Skribilo’s chapter is mapped to LaTeX’ section, and so on.

usepackage "\\usepackage{epsfig}\n"

The boolean #f if no package is used or a string declaring The LaTeX pack-
ages.

predocument "\\newdimen\\oldframetahcolsep\n\\newdimen\\oldcolortahcolsep\n\\newdimen\\oldpretabcolsep\n"

The boolean #f or a string to be written before the \begin{document} state-
ment.

postdocument #£

The boolean #f or a string to be written after the \begin{document} state-
ment.

maketitle "\\date{}\n\\maketitle"

The boolean #f or a string to be written after the \begin{document} statement
for emitting the document title.

'This option is supported when Guile 2.0+ is being used.

http://www.latex-project.org/

142

color

Enable/disable colors.

$font—-size

source—-color

Chapter 13. Engines

#t

#t

A boolean enabling/disabling color of source code (see source markup).

source-comment—-color

The source comment color.

source—-error—-color

The source error color.

source-define-color

The source define color.

source-module—color

The source module color.

source-markup-color

The source markup color.

source-thread-color

The source thread color.

source-string-color

The source string color.

source-bracket-color

The source bracket color.

source-type—-color

"#£fa600"

" red"

"#6959cft"

"#1919af"

"#1919af"

"#ad4386"

n red"

n red"

"#00cfo0"

13.4. LaTeX Engine 143

The source type color.

color—-usepackage "\\usepackage{color}\n"

The LaTeX package for coloring.

hyperref #t

Enables/disables hypererrf.

hyperref-usepackage "\\usepackage [setpagesize=false] {hyperref}\n"

The LaTeX package for hyperref.

image—-format ("eps™")

The image formats for this engine.

index-page-ref #t

Indexes use page references.

13.4.2. LaTeX Document Class

The default setting of the Skribilo LaTeX engine is to produce a document using the
article document class. In order to produce a document that uses a document
class defining the chapter command (unlike the article class), the engine must
be customized. Changing this setting can be done with expressions such as:

(let ((le (find-engine ’latex)))
(engine—-custom-set! le ’'documentclass "\\documentclass{book}")
(engine-custom-set! le ’'class—-has-chapters? #t))

13.5. ConTeXt Engine

The context engine produces documents for the ConTeXt document layout
system, which can then be used to produce high-quality PostScript or PDF output.

http://www.pragma-ade.nl/

7
13.5.6. ConTeXt Customization

document-style "book"

A string describing the document style.

user—-style #£f

A string denoting a the name of a file specifying user customization

font-type "roman"

A string denoting the default font family.

font-size 11

An integer representing the default font size.

image-format ("jpg™)

A list of supported image formats.

source—comment—color "$ffac00"

The source comment color.

source—-error—-color "red"

The source error color.

source-define-color "$#6959cft"

The source define color.

source—-module—-color "#1919af"

The source module color.

source-markup-color "$#1919af"

The source markup color.

source—-thread-color "#ad4386"

The source thread color.

13.5.6. ConTeXt Customization 145

source-string-color "red"

The source string color.

source-bracket-color "red"

The source bracket color.

source—-type—-color "#00cfoO"

The source type color.

13.7. Info Engine

The info engine produces GNU Info files for on-line browsing with GNU Emacs or
with the stand-alone Info reader of GNU Texinfo.

For each chapter, section, etc., an Info node is created, whose name is
inferred from the :title option. However, Info node names have to be unique, which
the :title options are not necessarily. Thus, the Info engine does two things:

1. It warns you about duplicate Info node titles.

2. It allows you to choose a different node name to avoid conflicts, using the
:info-node option of chapter, etc.

Most markups shown in Chapter 3 are meaningfully rendered in Info, including
tables. The image markup is also implemented: the Info reader in Emacs 23 and
later is able to display them, or to display the alternate text (the body of the image
markup) when running in text mode.

13.8. XML Engine

The XML engine produces a simple XML representation of Skribilo documents that
is essentially a one-to-one mapping of the input document. For instance, chapter
markups are turned into <chapter> nodes, etc.

http://www.gnu.org/software/texinfo/

22

13.8.1. XML Customization

Chapter 14. Skribilo Compiler

This chapter introduces the Skribilo compiler, i.e., the tool that turns input docu-
ments into various output formats.

Synopsis
skribilo [options] [input]...

Description

The skribilo compiler turns Skribilo input documents into one of a variety of
output formats, including HTML, LaTeX and Lout. The input format is specified
using the ~reader command-line option, while the output format is specified using
the -target option. These options and others are described below.

Suffixes

A number of file name extensions are used by convention:

.skb
a Skribilo or Skribe source file.

.html
an HTML target file.

.lout
a Lout target file.

.tex

a TeX, LaTeX or ConTeXt target file.

147

148

Chapter 14. Skribilo Compiler

.sui

a Skribe URL index file.

Options

The options supported by the skribilo compiler are listed below. They follow
the usual GNU convention, i.e., each option can have both a short name (a hyphen
followed by a single character) and a long name (two hyphens followed by a
name).

~h,

-V,

-c,

-0,

—help
Produce a help message.

-version

Show program version.

—reader=reader

Use reader toread the input file, i.e., as the format of the input file. Currently,
two formats are supported: skribe, which corresponds to the Skribe syntax
(see Chapter 2), or out1ine, which corresponds to plain text (markup-less) fol-
lowing the structuring conventions of Emacs” Outline mode (see Section 2.2).

—target=engine
Use engine as the engine, i.e., as the output format. For details on engines and
for a list of supported engines, see Chapter 13.

—custom=custom=value
Set engine custom custom to value, a constant. See Section 13.1.4 for more
information on customs.

—output=file
Write output to file.

—compat=compat

Use compat as the compatibility mode. This defaults to skribilo. Specifying
skribe enables the Skribe compatibility mode, making it possible to compile
most Skribe documents. Technically, the skribe compatibility mode populates
the name space of Skribilo documents with bindings available to Skribe docu-
ments and that are not available by default to Skribilo documents!' (e.g., SRFI-1

http://www.inria.fr/mimosa/fp/Skribe
http://srfi.schemers.org/srfi-1/srfi-1.html

Options 149

-e,

P,

-v,

-w,

functions, Bigloo’s hash table API, etc.); for Skribe functions not available in
Skribilo, such as skribe-1oad, a compatible implementation is provided.

—doc—-path=dir
Prepend dir to the document include path.

—bib-path=dir
Prepend dir to the bibliography include path.

—-source-path=dir

Prepend dir to the source include path.

—image-path=dir

Prepend dir to the image include path.

—-sui-path=dir
Prepend dir to the Skribe URL Index (SUI) search path (see Section 4.4
for details).

-base=base
Strip base (an arbitrary string, typically an URL) from all hyperlinks when
producing HTML files.

—eval=expr

Prepend expr to the list of expressions to be evaluated before the input docu-
ment is processed. expr is evaluated in the document’s environment/module;
thus, this option can be used to pass parameters to the document, e.g., with -e
" (define chbouib-enabled? "yes")’.

—-preload=file

Pre-load file before processing the input document. file is evaluated in the
document’s name space and should be a regular Scheme file, i.e., it cannot use
the Skribe syntax.

—-verbose[=level]

Be verbose, unless level is 0.

-warning[=level]

Issue warnings, unless level is 0.

!Skribe uses a single name space for all the code of packages, documents, in addition to bindings
provided by the underlying Scheme implementation.

150 Chapter 14. Skribilo Compiler

—-g, —debug[=arg]
Issue debugging output, unless arg is 0.If arg is not a number, it is interpreted
as a symbol to be watched.

—no-color
By default, debugging output is colored on capable terminals such as xterm or
the Linux console (check your TERM environment variable). This option turns
coloring off.

Environment Variables

The skribilo command does not pay attention to any specific environment vari-
able. In particular, it does not honor the SKRIBEPATH variable that is recognized
by Skribe. Instead, you should use the -I command-line option to specify the
load path of documents (see include), or, alternatively, change the value of the
GUILE_LOAD_PATH variable, which affects Guile’s own module load path.

Chapter 15. Getting Configuration
Information

This chapter presents skribilo-config,astand-alone program that gives informa-
tion about the current configuration.

Synopsis

skribilo-config [options]...

Description

The skribilo-config program givesinformation about the Skribilo configuration,
such as the module installation path, version number, etc. The full list of supported
options and their meaning is the following;:

Usage: skribilo-config [OPTIONS]
Display the configuration of Skribilo.

-version, -v Show Skribilo version.

—-help, -h Show a list of options.

-prefix, -p Prefix that was given during the
build

-module-dir, -m Display the Guile module directory

—-doc—-dir, -d Display the documentation directory
location

—emacs-dir, -e Display the emacs directory location

—-scheme, -s Display the configured Scheme imple-—
mentation

151

152 Chapter 15. Getting Configuration Information

Report bugs to <skribilo-users@nongnu.org>.
Note that the same information can be obtained through the programming
interface exposed by the (skribilo config) module (see Section 12.2).

Chapter 16. Editing Skribilo
Programs

Skribilo documents can be typed in. The outline syntax (see Section 2.2) can
be easily typed in with any editor, although the Outline and Org modes found in
GNU Emacs and XEmacs make it more convenient to deal with this format. For
instance, they allow section contents to be hidden, leaving only the section headings
visible; Org Mode can also highlight forms that denote emphasis, and provide
proper display of Org-Mode-style hyperlinks (well, not surprisingly).

When using the Skribe syntax (see Section 2.1), it is highly recommended to use
GNU Emacs or XEmacs. In addition to parentheses matching, these editors provide
syntax highlighting (or “fontification”) through the Skribe Mode described below.

16.1. Skribilo Emacs Mode

The Skribilo distribution contains an Emacs minor mode that provides fontification
and indentation of Skribilo documents. This is the preferred method for writing
Skribilo documents using Emacs.

To use the Skribilo Emacs mode, you need to tell Emacs that when the Emacs
Lisp skribilo-mode function is needed it has to be loaded from the skribi-
lo.el file:

(autoload ’skribilo-mode "skribilo.el" "Skribilo mode." t)

The skribilo.el file must be in the path described by the Emacs Lisp
load-path variable.

The skribilo mode is a minor mode. It is intended to be used with a Lisp or
Scheme mode. Hence, to use the skribilo mode you will have to use the following
Emacs commands:

M-x scheme-mode
M-x skribe-mode

153

http://www.gnu.org/software/emacs
http://www.xemacs.org

154 Chapter 16. Editing Skribilo Programs

The Skribilo distribution also contains an older Emacs minor mode dedicated
to Skribe, originally written by Manuel Serrano. This mode is now deprecated.

Chapter 17. List of examples

1. The outline syntax (chapter Syntax)

2. Programming Skribilo documents in Scheme. (chapter Syntax)
3. Writing a new reader. (chapter Syntax)

4. The document markup (chapter Standard Markups)

5. The author markup (chapter Standard Markups)

6. The chapter markup (chapter Standard Markups)

7. The toc markup (chapter Standard Markups)

8. A restricted table of contents (chapter Standard Markups)
9. The ornament markups (chapter Standard Markups)

10. The font markup (chapter Standard Markups)

11. The justification markups (chapter Standard Markups)
12. The enumeration markups (chapter Standard Markups)
13. The frame markup (chapter Standard Markups)

14. The color markup (chapter Standard Markups)

15. The figure markup (chapter Standard Markups)

16. The figure markup (chapter Standard Markups)

17. The image markup (chapter Standard Markups)

18. A table (chapter Standard Markups)

19. A footnote (chapter Standard Markups)

20. Some characters (chapter Standard Markups)

21. Some characters (chapter Standard Markups)

22. Some references (chapter References and Hyperlinks)
23. Mail address reference (chapter References and Hyperlinks)
24. Creation of a new index (chapter Indexes)

25. Adding entries to an index (chapter Indexes)

26. Printing indexes (chapter Indexes)

27. Printing a Bibliography (chapter Bibliographies)

155

156 Chapter 17. List of examples

28. Printing a Bibliography (chapter Bibliographies)

29. Unfiltering Bibliography Entries (chapter Bibliographies)
30. Unfiltering Bibliography Entries (chapter Bibliographies)
31. Unfiltering Bibliography Entries (chapter Bibliographies)
32. Sorting Bibliography Entries (chapter Bibliographies)

33. A program (chapter Computer Programs)

34. The source markup (chapter Computer Programs)

35. The source markup for C (chapter Computer Programs)

36.Example of a simple equation using the verbose syntax (chapter Equation For-
matting)

37. Example of a simple equation (chapter Equation Formatting)

38.Inlined, displayed, and aligned equations (chapter Equation Formatting)
39. Example of a pie chart (chapter Pie Charts)

40. Specifying the layout of a pie chart (chapter Pie Charts)

41. Example of Skribilo slides (chapter Slide Package)

42. A Lout illustration (chapter Engines)

Index

157

	Introduction
	Who May Use Skribilo?
	Why Use Skribilo?
	More on Skribilo

	1. Getting Started
	1.1. Hello World!
	1.2. Adding Colors and Fonts
	1.3. Structured Documents
	1.4. Hyperlinks
	1.5. Using Modules
	1.6. Dynamic Documents
	1.6.1. Simple Computations
	1.6.2. Text Generation
	1.6.3. Introspection

	1.7. Compiling Skribilo Documents

	2. Syntax
	2.1. The Skribe Syntax
	2.1.1. Formal Syntax
	2.1.2. Values

	2.2. The Outline Syntax
	2.3. The Gemtext Syntax
	2.4. The RSS 2.0 Syntax
	2.5. Documents in Scheme Programs
	2.6. Writing New Readers

	3. Standard Markups
	3.2. Spacing
	3.4. Table of contents
	3.5. Ornaments
	3.6. Line breaks
	3.6.1. Linebreak
	3.6.2. Horizontal rule

	3.7. Font
	3.8. Justification
	3.9. Enumeration
	3.10. Frames and Colors
	3.10.1. Frame
	3.10.2. Color

	3.11. Figures
	3.11.1. List of Figures

	3.12. Images
	3.12.1. Image formats

	3.13. Table
	3.13.1. Table Row
	3.13.2. Table Cell
	3.13.3. Example

	3.14. Footnote
	3.15. Characters, Strings and Symbols
	3.15.1. Characters
	3.15.2. Strings
	3.15.3. Symbols

	4. References and Hyperlinks
	4.1. Mark
	4.2. Reference
	4.3. Electronic Mail
	4.4. Skribe URL Index

	5. Indexes
	5.1. Making indexes
	5.2. Adding entries to an index
	5.3. Printing indexes

	6. Bibliographies
	6.1. Bibliography Tables
	6.2. Bibliography
	6.2.1. Bibliography Syntax

	6.3. Printing a Bibliography
	6.3.1. Filtering Bibliography Entries
	6.3.2. Sorting Bibliography Entries

	6.4. Skribebibtex

	8. Equation Formatting
	8.1. Syntax
	8.2. Rendering
	8.3. Summary

	9. Pie Charts
	9.1. Syntax

	11. Standard Packages
	11.1. Articles
	11.1.1. acmproc
	11.1.2. jfp
	11.1.3. lncs

	11.2. Languages
	11.2.1. french

	11.3. letter
	11.4. Web
	11.4.1. web-book
	11.4.2. web-book2
	11.4.3. html-navtabs

	12. Standard Library
	12.1. File Functions
	12.2. Configuration Functions

	13. Engines
	13.1. Manipulating Engines
	13.1.1. Creating Engines
	13.1.2. Retrieving Engines
	13.1.3. Engine Accessors
	13.1.4. Engine Customs
	13.1.5. Writing New Engines

	13.2. HTML Engine
	13.2.1. HTML Customization

	13.3. Lout Engine
	13.3.1. Lout Customization
	13.3.2. Additional Markup

	13.4. LaTeX Engine
	13.4.1. LaTeX Customization
	13.4.2. LaTeX Document Class

	13.5. ConTeXt Engine
	13.5.6. ConTeXt Customization

	13.7. Info Engine
	13.8. XML Engine
	13.8.1. XML Customization

	14. Skribilo Compiler
	14. Synopsis
	14. Description
	14. Suffixes
	14. Options
	14. Environment Variables

	15. Getting Configuration Information
	15. Synopsis
	15. Description

	16. Editing Skribilo Programs
	16.1. Skribilo Emacs Mode

	17. List of examples

